On polynomials with a root close to an integer

Artūras Dubickas

Let \(P(x) \) be a polynomial with integer coefficients. Let also two positive integers \(n \) and \(H \) denote its degree and height respectively. Suppose \(P(x) \) has no roots at integers. We are interested in finding how well a root of \(P(x) \) can be approximated by an integer.

A more general problem of estimating the distance \(|\alpha - \beta| \), where \(\alpha \) is a root of \(P(x) \) and \(\beta \) is an algebraic number, was extensively studied. The case when \(\beta \) is a conjugate of \(\alpha \) is known as a root separation problem which was studied by K. Mahler [13], R. Gütting [12], M. Mignotte and M. Payafar [15] and by the author [6]. For applications see, e.g., M. Mignotte, M. Petkovic and M. Trajkovic [16].

The case when \(\beta \) is a fixed algebraic number which is not a conjugate of \(\alpha \) was investigated by M. Mignotte [14] (see also [18]), F. Amoroso [2]. A very important particular case \(\beta = 1 \) was also first studied in [14]. Later the distance between an algebraic number and unity was investigated by M. Mignotte and M. Waldschmidt [17], Y. Bugeaud, M. Mignotte and F. Normandin [5]. F. Amoroso [1] showed that these bounds are not far from being sharp. The best lower and upper bounds for \(|\alpha - 1| \) are due to the author [7], [8]. The lower bound for \(|\alpha - 1| \) is given in terms of degree and the Mahler measure of \(\alpha \). P. Borwein and C. Pinner [4] investigated in detail the case \(H = 1 \). In particular, they describe explicitly the extremal polynomial with the closest real root to 1.

Let us define

\[
\delta(P) = \min |\alpha - r|,
\]

where the minimum is taken over \(\alpha \) such that \(P(\alpha) = 0 \) and \(r \in \mathbb{Z} \). V. G. Alexeev, A. Polupanov and I. Shparlinski [10] considered the minimal distance from differences of roots of a polynomial to the nearest integers \(\min |\alpha_i - \alpha_j - r| \) and discussed its applications.

We start with the following simple argument. Suppose that

\[
P(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_0 = a_n(x - \alpha_1)\ldots(x - \alpha_n),
\]

where \(a_n \neq 0 \) and \(a_j, j = 0 \).

Suppose also that \(\delta(P) = |\alpha_1| \).

Indeed, all the roots of the polynomial

\[\text{if } |r| > H + 2, \text{ then } \delta(P) > 1.\]

then

\[
1 \leq |P(r)| \leq H\delta(P)
\]

a contradiction.

It turns out that it is possible to optimize \(\delta(P) \) in the class of polynomials of bounded height. Let us

\[
Q(x) = x^n - \tau
\]

Suppose that \(\tau \) is the smallest positive number such that

\[
Q(x) = x^n - \tau
\]

With this notation the following theorem is true.

Theorem. Let \(H \) be a positive integer such that \(n > n(H) \) then for \(\delta(P) \) in the class of polynomials of bounded height at most \(H \) and \(\delta(P) = \tau \).

We believe that the theorem is true. However, our proof involves a result of Erdős and P. Turán [9] on the angular structure of the complex plane with \(n \) points bounded by \(16\sqrt{n \log((n + 1)H)} \). For this reason we need \(n \) to be su

References

On polynomials with a root close to an integer

where \(a_n \neq 0 \) and \(a_j, j = 0, 1, \ldots, n \), are integers of the absolute value at most \(H \). Suppose also that \(\delta(P) = |a_1 - r| > 0 \). We will prove that then

\[
\delta(P) > (2H + 2)^{-n}.
\]

Indeed, all the roots of the polynomial \(P \) lie in the open disc \(|z| < H + 1 \). So that if \(|r| \geq H + 2 \), then \(\delta(P) > 1 \). If however \(|r| \leq H + 1 \) and \(0 < \delta(P) \leq (2H + 2)^{-n} \), then

\[
1 \leq |P(r)| = |a_n||a_1 - r||a_2 - r| \cdots |a_n - r| \\
\leq H \delta(P)(2H + 2)^{-n-1} \leq H/(2H + 2) < 1,
\]

a contradiction.

It turns out that it is possible not only to strengthen the simple inequality \(\delta(P) > (2H + 2)^{-n} \), but to describe explicitly the extremal polynomials which minimize \(\delta(P) \) in the class of polynomials with integer coefficients of a given degree and of bounded height. Let us put

\[
Q(x) = x^n - H(x^{n-1} + x^{n-2} + \cdots + x + 1).
\]

Suppose that \(\tau \) is the smallest positive root of the equation

\[
x(H + 1 - x)^n = H.
\]

With this notation the following theorem holds.

Theorem. Let \(H \) be a positive integer. There exists an effective constant \(n(H) \) such that if \(n \geq n(H) \) then for any polynomial \(P(x) \in \mathbb{Z}[x] \) of degree \(n \) and of height at most \(H \) either \(\delta(P) = 0 \) or \(\delta(P) \geq \tau \). Here the equality holds if and only if \(P(x) = \pm Q(\pm x) \).

We believe that the theorem holds for all \(n \geq 2 \) (i.e. \(n(H) \) can be taken as 2). However, our proof involves a result on uniform distribution of roots in angles. In 1950, P. Erdős and P. Turán [9] proved that the number of roots of \(P(x) \in \mathbb{C}[x] \) in an angle of the complex plane with vertex at the origin minus "expected" number of roots is bounded above by \(16\sqrt{n} \log(L(P))/\sqrt{|a_0a_n|} \), where \(L(P) \) is the length of \(P \) (see, e.g., [3], [11] for further work on this problem). For \(P(x) \in \mathbb{Z}[x] \) this is less than \(16\sqrt{n} \log((n + 1)H) \). We need this quantity divided by \(n \) to be small. For this reason we need \(n \) to be sufficiently large.

References

On polynomials with a root close to an integer

