ALGEBRAIC NUMBERS WITH BOUNDED DEGREE AND WEIL HEIGHT

ARTŪRAS DUBICKAS

(Received 12 March 2018; accepted 8 May 2018; first published online 18 July 2018)

Abstract

For a positive integer d and a nonnegative number ξ, let $N(d, \xi)$ be the number of $\alpha \in \mathbb{Q}$ of degree at most d and Weil height at most ξ. We prove upper and lower bounds on $N(d, \xi)$. For each fixed $\xi > 0$, these imply the asymptotic formula $\log N(d, \xi) \sim \xi^d$ as $d \to \infty$, which was conjectured in a question at Mathoverflow [https://mathoverflow.net/questions/177206].

2010 Mathematics subject classification: primary 11R06; secondary 11R09.

Keywords and phrases: Mahler measure, Weil height, counting function, irreducible polynomial.

1. Introduction

For an algebraic number α of degree d over \mathbb{Q} with conjugates $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d$ and minimal polynomial

$$a_d(x - \alpha_1) \cdots (x - \alpha_d) = a_dx^d + \cdots + a_1x + a_0 \in \mathbb{Z}[x],$$

where $a_d > 0$, we denote by $H(\alpha) := \max_{0 \leq j \leq d} |a_j|$ the height of α and by

$$M(\alpha) := a_d \prod_{i=1}^{d} \max\{1, |\alpha_i|\}$$

the Mahler measure of α. For $\alpha \in \mathbb{Q}$, these quantities are related by the inequalities

$$H(\alpha)2^{-d} \leq M(\alpha) \leq H(\alpha) \sqrt{d + 1} \quad (1.1)$$

(see, for instance, [15] and [16, Lemma 3.11]).

Set

$$M(d, T) := \#\{\alpha \in \mathbb{Q} : \deg \alpha = d, \ M(\alpha) \leq T\},$$

This research was funded by the European Social Fund according to the activity Improvement of researchers qualification by implementing world-class R&D projects of Measure no. 09.3.3-LMT-K-712-01-0037.

© 2018 Australian Mathematical Publishing Association Inc.
where \#A stands for the cardinality of the set A. For \(d \geq 2 \) and

\[
V_d := 2^{d+1}(d+1)^{(d-1)/2} \prod_{i=1}^{[(d-1)/2]} \frac{(2i)^{d-2i}}{(2i+1)^{d+1-2i}},
\]

the asymptotic formula

\[
M(d, T) = \frac{dV_d}{2\zeta(d+1)} T^{d+1} + O(T^d (\log T)^{2/d}) \quad \text{as } T \to \infty
\]

has been established in [2] and [10]. (Throughout, \(\zeta(s) \) is the Riemann zeta-function.) See also [1, 11, 17] and the references therein for some generalisations. In [9], this formula is given with an explicit error term: for any \(d \geq 3 \) and any \(T \geq 1 \),

\[
\left| M(d, T) - \frac{dV_d}{2\zeta(d+1)} T^{d+1} \right| \leq 3.37 \cdot 15.01^d \cdot T^d.
\]

This inequality gives the asymptotic formula for \(M(d, T) \) as \(d \to \infty \) in the range \(\log T \gg d^2 \). (Here and below, the notation \(v \gg w \) means that the inequality \(v \geq cw \) holds with some positive constant \(c \).) By [2, Theorem 4], this asymptotic formula holds in a wider range \(\log T \gg d \log d \), but with slightly larger error term in \(T \). However, for small \(T \), for example, \(T \) fixed at \(T = 2 \), the problem of finding the correct order of \(M(d, T) \) is wide open. See, for instance, the papers [3, 5, 13]. More precisely, from the main result of [5] one can derive \(M(d, 2) \gg c d^5 \) with some absolute constant \(c > 0 \), whereas the best known upper bound is only \(M(d, 2) < 2^{(1+\varepsilon)d} \) for any \(\varepsilon > 0 \) and \(d \geq d(\varepsilon) \) [6]. Another interesting case, \(T = 1 \), corresponds to the constant

\[
C := \limsup_{d \to \infty} \frac{\log M(d, 1)}{\log d},
\]

(1.2)

which has been studied by Erdős [7] and Pomerance [14]. This constant can be expressed as the number of solutions of the equation \(\phi(n) = d \) for \(n \in \mathbb{N} \) (when \(d \) is fixed), where \(\phi \) is Euler's totient function, and bounds can be found using tools from analytic number theory. Erdős and Pomerance showed that \(0.55 < C \leq 1 \) and Erdős conjectured that \(C = 1 \) [8].

In the upper bound direction, for \(d \) sufficiently large and any \(T \geq 1 \), we showed in [6] that the number of integer polynomials of degree \(d \) and with positive leading coefficient, nonzero constant coefficient and Mahler measure at most \(T \) is bounded above by \(T^{d(1+16 \log \log d/\log d)\varepsilon^{3.58} \sqrt{d}} \) for \(d \) large enough. Furthermore, the factor \(e^{3.58 \sqrt{d}} \) can be removed for \(T \geq 1.32 \). The roots of any such polynomial, irreducible over \(\mathbb{Q} \) and whose coefficients are relatively prime, give \(d \) algebraic numbers of degree \(d \) and Mahler measure at most \(T \). Hence, the main result of [6] yields the inequality

\[
M(d, T) < d T^{d(1+16 \log \log d/\log d)}
\]

(1.3)

for each \(T \geq 1.32 \) and each sufficiently large integer \(d \), say \(d \geq d_0 \).

In this paper, we consider the related quantity

\[
N(d, \xi) := \# \{ \alpha \in \overline{\mathbb{Q}} : \deg \alpha \leq d, \ h(\alpha) \leq \xi \},
\]
where
\[h(\alpha) := \frac{\log M(\alpha)}{\deg \alpha} \]
is the Weil height of \(\alpha \). Using [2, Theorem 4] and following the approach of [10], for \(\xi \gg \log d \), one can derive the asymptotic formula
\[N(d, \xi) \sim \frac{dV_d e^{\xi(d+1)}}{2\xi(d+1)} \quad \text{as } d \to \infty. \tag{1.4} \]
In [12], the problem of finding the asymptotic formula for \(N(d, 1) \) (noting that \(\xi = 1 \) is much less than \(\log d \)), or, less ambitiously, for \(\log N(d, 1) \) as \(d \to \infty \), has been raised. From the discussion in [12] and also from (1.4), one can conjecture that the expected formula is
\[\log N(d, 1) \sim d^2 \quad \text{as } d \to \infty. \tag{1.5} \]
In this note, we prove the following theorem, which implies (1.5).

Theorem 1.1. For each \(\xi \geq 2d^{-1} \log d \) and each sufficiently large \(d \),
\[-\frac{d \log d}{2} < \log N(d, \xi) - \xi d^2 < \frac{17\xi d^2 \log \log d}{\log d}. \]

It is clear that Theorem 1.1 yields the asymptotic formula
\[\log N(d, \xi) \sim \xi d^2 \quad \text{as } d \to \infty \quad \text{and} \quad \frac{\xi d}{\log d} \to \infty. \]
Of course, equation (1.4) immediately implies this asymptotic formula, but only in the range \(\xi \gg \log d \). We also remark that, for \(0 \leq \xi \leq d^{-1} (\log d)^{-3} \), by combining a Dobrowolski-type bound with the above mentioned results [7, 8, 14], one gets
\[\log N(d_k, \xi) \sim C \log d_k \quad \text{as } d_k \to \infty, \]
where \(C \) is the constant defined in (1.2) and \((d_k)_{k=1}^\infty \) is some increasing sequence of positive integers.

In fact, the lower bound on \(\log N(d, \xi) - \xi d^2 \) as claimed in Theorem 1.1 will be proved for \(d \geq 1.784 \cdot 10^8 \). In principle, some explicit constant \(D_0 \) such that the upper bound of Theorem 1.1 for \(\log N(d, \xi) - \xi d^2 \) is true for each \(d \geq D_0 \) can also be given. However, it depends on the corresponding bound \(d \geq d_0 \) in (1.3), which was not calculated in [6], so we will not give it here.

For \(\log M(d, T) \), by applying the same arguments, we get the following bounds.

Theorem 1.2. For each \(T \geq 38d^{3/2} (\log d)^2 \) and each sufficiently large \(d \),
\[-\frac{d \log d}{2} < \log M(d, T) - d \log T < \frac{17d \log T \log \log d}{\log d}. \]
We will prove the lower bound on \(\log M(d, T) - d \log T \) for each \(d \geq 6 \). Note that Theorem 1.2 implies the asymptotic formula
\[\log M(d, T) \sim d \log T \quad \text{as } d \to \infty \quad \text{and} \quad \frac{\log T}{\log d} \to \infty. \]
In the next section, we give some auxiliary results and combine them into Lemma 2.3. Then, in Section 3, we give the proofs of the theorems.
2. Auxiliary results

Let \(d, H \geq 2 \) be two integers. Consider the set \(P(d, H) \) of integer polynomials defined by

\[
P(d, H) := \left\{ a_dx^d + \cdots + a_1x + a_0 \in \mathbb{Z}[x] : a_d > 0, a_0 \neq 0, \max_{0 \leq j \leq d} |a_j| \leq H \right\}.
\]

In [4, Theorem 1], we showed that the number of integer polynomials reducible over \(\mathbb{Q} \) and of degree \(d \) and height at most \(H \) is less than

\[
2H(2H+1)^{d-1} + 2dH(2H+1)^{d-1}(\log(2H))^2.
\]

Here, the first term corresponds to the polynomials whose free term is zero. Since the polynomials with \(a_d < 0 \) are also counted in the above formula, we can remove the factor 2 from the second term and restate this result as shown in the following lemma.

Lemma 2.1. For any integers \(d, H \geq 2 \), the number of polynomials in \(P(d, H) \) reducible over \(\mathbb{Q} \) is less than

\[
dH(2H+1)^{d-1}(\log(2H))^2.
\]

Of course, the coefficients of a polynomial irreducible over \(\mathbb{Q} \) are not necessarily coprime (for instance, the coefficients of \(2x^2 - 6x + 2 \) are all divisible by 2). For this reason, we also need the following result.

Lemma 2.2. For any integers \(d \geq 6 \) and \(H \geq 6d \), the set \(P(d, H) \) contains at least

\[
\frac{2^d H^{d+1}}{\zeta(d+1)} - d2^{d+2}H^d
\]

polynomials \(a_dx^d + \cdots + a_1x + a_0 \) satisfying \(\gcd(a_d, \ldots, a_1, a_0) = 1 \).

Proof. Let \(g \) be an integer in the range \(1 \leq g \leq H \). Suppose there are \(N_g(H) \) polynomials in \(P(d, H) \) satisfying \(\gcd(a_d, \ldots, a_1, a_0) = g \). Our aim is to estimate \(N_1(H) \) from below. Clearly,

\[
#P(d, H) = 2H^2(2H+1)^{d-1},
\]

since there are \(H \) possibilities for \(a_d \), \(2H \) possibilities for \(a_0 \), and \(2H + 1 \) possibilities for each \(a_j \), where \(j = 1, \ldots, d - 1 \). Consequently,

\[
N_1(H) + N_2(H) + \cdots + N_H(H) = 2H^2(2H+1)^{d-1}.
\]

Observe that \(N_g(H) = N_1([H/g]) \) for \(g = 1, \ldots, H \). Hence,

\[
\sum_{g=1}^H N_1([H/g]) = 2H^2(2H+1)^{d-1}.
\]

Now, by the Möbius inversion formula,

\[
N_1(H) = \sum_{g=1}^H \mu(g)2[H/g]^2(2[H/g] + 1)^{d-1}. \tag{2.1}
\]
Split the sum on the right-hand side of (2.1) into two sums \(N_1(H) = S_1 + S_2\), where \(S_1\) is taken over \(g\) in the interval \(1 \leq g \leq \lfloor H/d \rfloor\) and \(S_2\) is over \([H/d] + 1 \leq g \leq H\). Since \(H/g \leq d\), we find that
\[
|S_2| \leq (H - \lfloor H/d \rfloor)2(H/g)^2(2H/g + 1)^{d-1} < 2d^2(2d + 1)^{d-1}H.
\]
So, in view of
\[
2d^2(2d + 1)^{d-1} < 2d^2(13d/6)^{d-1} \leq 2d^2(13H/36)^{d-1} < 0.5H^{d-1},
\]
we conclude that
\[
|S_2| < 0.5H^d.
\]

To evaluate the sum
\[
S_1 := \sum_{g=1}^{\lfloor H/d \rfloor} \mu(g)2[H/g]^2(2\lfloor H/g \rfloor + 1)^{d-1},
\] (2.2)
we first show that the difference between \(2[H/g]^2(2\lfloor H/g \rfloor + 1)^{d-1}\) and \(2^d(H/g)^{d+1}\) is small, and then investigate
\[
S_0 := \sum_{g=1}^{\lfloor H/d \rfloor} \mu(g)2^d(H/g)^{d+1}.
\] (2.3)

Indeed, both numbers, \(2[H/g]^2(2\lfloor H/g \rfloor + 1)^{d-1}\) and \(2^d(H/g)^{d+1}\), belong to the interval
\[
(2(y - 1)^2(2y - 1)^{d-1}, 2y^2(2y + 1)^{d-1}],
\]
where \(y := H/g \geq 2\). Thus, the difference between them does not exceed the length of the interval, namely,
\[
2y^2(2y + 1)^{d-1} - 2(y - 1)^2(2y - 1)^{d-1} < \frac{(2y + 1)^{d+1} - (2y - 2)^{d+1}}{2}.
\]
By the mean value theorem, the latter difference equals \(1.5(d + 1)y_0^d\) for some \(y_0\) in the interval \([2y - 2, 2y + 1]\). Consequently,
\[
|2[H/g]^2(2\lfloor H/g \rfloor + 1)^{d-1} - 2^d(H/g)^{d+1}| < 1.5(d + 1)(2H/g + 1)^d.
\]
Combining this with (2.2) and (2.3), we derive
\[
|S_1 - S_0| \leq 1.5(d + 1) \sum_{g=1}^{\lfloor H/d \rfloor} (2H/g + 1)^d.
\]

The first term in the above sum is \((2H + 1)^d\). The quotient of the \(g\)th term and the first term is
\[
\frac{(2H/g + 1)^d}{(2H + 1)^d} = \left(\frac{2H + g}{2H + 1}\right)^d \cdot \frac{1}{g^d} \leq \frac{(2H + H/d)^d}{(2H + 1)^d} \cdot \frac{1}{g^d} < \left(1 + \frac{1}{2d}\right)^d \cdot \frac{1}{g^d} < \frac{1.65}{g^d}.
\]
It follows that
\[|S_1 - S_0| < 1.5(d + 1) \frac{1.65}{\zeta(d)} (2H + 1)^d < \frac{2.5(d + 1)}{\zeta(d)} (2H + 1)^d. \]

Therefore, applying the inequality
\[\left(1 + \frac{1}{2H}\right)^d \leq \left(1 + \frac{1}{12d}\right)^d < 1.09, \]
we conclude that
\[|S_1 - S_0| < \frac{(3d + 3)(2H)^d}{\zeta(d)} < 3.5d2^d H^d. \] (2.5)

Next, since the Dirichlet series that generates the Möbius function is the inverse of the Riemann zeta function, from (2.3) we find that
\[\frac{S_0}{2^d H^{d+1}} = \sum_{g=1}^{[H/d]} \mu(g) g^{d+1} = \frac{1}{\zeta(d + 1)} - \sum_{g=[H/d]+1}^{\infty} \frac{\mu(g)}{g^{d+1}}. \]

This leads to
\[
\left| S_0 - \frac{2^d H^{d+1}}{\zeta(d + 1)} \right| \leq 2^d H^{d+1} \sum_{g=[H/d]+1}^{\infty} \frac{1}{g^{d+1}} < \frac{2^d H^{d+1}}{d(H/d - 1)} \leq \frac{2^d H^{d+1}}{d(5H/6d)} = 2.4^d d^{d-1} H \\
\leq 2.4^d (H/6)^{d-1} H < 0.1H^d.
\]

Combining this with (2.1)–(2.3) and (2.5), we deduce that
\[
\left| N_1(H) - \frac{2^d H^{d+1}}{\zeta(d + 1)} \right| = \left| S_2 + S_1 - S_0 + S_0 - \frac{2^d H^{d+1}}{\zeta(d + 1)} \right| \\
\leq |S_2| + |S_1 - S_0| + |S_0 - \frac{2^d H^{d+1}}{\zeta(d + 1)}| \\
< 0.5H^d + 3.5d2^d H^d + 0.1H^d < 2d^{d+2} H^d.
\]

This yields the required lower bound on \(N_1(H) \) and proves the lemma. \(\square \)

From Lemmas 2.1 and 2.2 we will derive the following lemma.

Lemma 2.3. For any \(d \geq 6 \) and any \(H \geq 37d(\log d)^2 \) there are at least
\[d2^{d-1} H^{d+1} \] (2.6)

algebraic numbers of degree \(d \) and height at most \(H \).

Proof. Lemmas 2.1 and 2.2 imply that, for \(d \geq 6 \) and \(H \geq 6d \),
\[I(d, H) > \frac{2^d H^{d+1}}{\zeta(d + 1)} - d2^{d+2} H^d - dH(2H + 1)^{d-1} (\log(2H))^2, \]
where \(I(d, H) \) is the number of irreducible polynomials in \(\mathbb{Z}[x] \) lying in the set \(P(d, H) \).
By (2.4), we have $(2H + 1)^d < 1.09 \cdot 2^d H^d$. It follows that

$$dH(2H + 1)^{d-1} < \frac{d}{2}(2H + 1)^d < d2^d H^d,$$

and hence

$$d2^{d+2} H^d + dH(2H + 1)^{d-1} (\log(2H))^2 < d2^d H^d (4 + (\log(2H))^2).$$

Therefore,

$$I(d, H) > 2^d H^d (H \zeta(d + 1) - 4d - d(\log(2H))^2) > 2^d H^d (0.98H - 4d - d(\log(2H))^2).$$

Note that the function

$$u(x) := \frac{0.24x}{4 + (\log x)^2} - d$$

is increasing in $x > 0$. Furthermore, one can easily verify that, for each $d \geq 6$,

$$u(74d(\log d)^2) = d\left(\frac{17.76(\log d)^2}{4 + (\log(74d(\log d)^2))^2} - 1\right) > 0.$$

Hence, $u(x) > 0$ for $x \geq 74d(\log d)^2$. Now, assuming that

$$H \geq 37d(\log d)^2$$

and $d \geq 6$, from $u(2H) > 0$ we deduce that

$$0.98H - 4d - d(\log(2H))^2 > 0.5H.$$

Therefore,

$$I(d, H) > 2^d H^d \cdot 0.5H = 2^{d-1} H^{d+1}.$$

This implies (2.6), since each of these polynomials (with positive leading coefficients) gives d algebraic numbers of degree d and height at most H. \hfill \square

3. Proofs of the theorems

Proof of Theorem 1.1. We will apply Lemma 2.3 with

$$H := \lfloor e^{\xi d}(d + 1)^{-1/2} \rfloor$$

and d so large that $H \geq 37d(\log d)^2$. (Recall that $\xi \geq 2^{-d^2} \log d$, so the inequality $H \geq 37d(\log d)^2$ holds for $d \geq 1.784 \cdot 10^8$.) Then, by (1.1) and (2.6), each of those $d2^{d-1} H^{d+1}$ algebraic numbers α has degree d and Weil height

$$h(\alpha) = \frac{\log M(\alpha)}{d} \leq \frac{\log(H(\alpha) \sqrt{d + 1})}{d} \leq \frac{\log e^{\xi d}}{d} = \frac{\xi d}{d} = \xi.$$
Hence, for all \(d \geq 1.784 \cdot 10^8\) and \(\xi \geq 2d^{-1} \log d\),

\[
N(d, \xi) \geq d^{2d-1} [e^{\xi d}(d+1)^{-1/2}]^{d+1} > d^{2d-1} \left(\frac{e^{\xi d} - \sqrt{d+1}}{\sqrt{d+1}} \right)^{d+1}
\]

This implies the required lower bound on \(\log N(d, \xi)\).

For the upper bound, we first observe that, by (1.1), each \(\alpha \in \overline{\mathbb{Q}}\) of degree \(d\) whose Mahler measure is bounded by \(T\), satisfies

\[
H(\alpha) \leq 2d M(\alpha) \leq 2^d T.
\]

Thus,

\[
M(d, T) \leq (2^{d+1} T + 1)^{d+1} < (2^{d+2} T)^{d+1} = 2^{(d+1)(d+2)} T^{d+1}.
\]

Next, observe that each \(\alpha\) of degree at most \(d\) and Weil height at most \(\xi\) satisfies \(M(\alpha) \leq e^{\xi \deg \alpha} \leq e^{\xi d}\). Now, using (1.3) with \(T = e^{\xi d}\) for \(j\) in the range \(d_0 \leq j \leq d\), where \(d_0\) is so large that (1.3) is true for \(d \geq d_0\), and (3.1) for \(j < d_0\), we deduce that

\[
N(d, \xi) \leq \sum_{j=0}^{d_0-1} M(j, e^{\xi d}) = \sum_{j=0}^{d_0-1} M(j, e^{\xi d}) + \sum_{j=d_0}^{d-1} M(j, e^{\xi d})
\]

for \(d\) large enough. This proves the required upper bound.

Proof of Theorem 1.2. By (1.3), we find that

\[
M(d, T) < T^{d(1+17 \log \log d/d\log d)}
\]

for \(T \geq 1.32\) and \(d\) large enough. This implies the claimed upper bound.

To prove the lower bound, apply Lemma 2.3 with

\[
H := \lfloor T(d+1)^{-1/2} \rfloor,
\]

where \(T \geq 38d^{3/2}(\log d)^2\) and \(d \geq 6\). Then, by (1.1) and (2.6), each of those \(\geq d^{2d-1} H^{d+1}\) algebraic numbers has degree \(d\) and Mahler measure at most \(T\). Consequently, using the bounds \(T - \sqrt{d+1} > T/2\) and \(d \geq 6\), we deduce that

\[
M(d, T) \geq d^{2d-1} [T(d + 1)^{-1/2}]^{d+1} > d^{2d-1} \left(\frac{T - \sqrt{d+1}}{\sqrt{d+1}} \right)^{d+1} \frac{d^{d+1}}{d T^{d+1}}
\]

\[
> d^{2d-1} (d+1)^{-d+1/2} \left(\frac{T}{2} \right)^{d+1} = \frac{2d^d T^d}{4 \sqrt{d+1} (d+1)^{d+1}}
\]

which gives the claimed lower bound.
References

ARTŪRAS DUBICKAS, Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: arturas.dubickas@mif.vu.lt