Intervals without primes near elements
of linear recurrence sequences

Artūras Dubickas
Department of Mathematics and Informatics
Vilnius University, Naugarduko 24
Vilnius LT-03225, Lithuania
arturas.dubickas@mif.vu.lt

Received 9 January 2017
Accepted 18 May 2017
Published 25 August 2017

Let \((f_n)_{n=1}^\infty\) be an unbounded sequence of integers satisfying a linear recurrence relation with integer coefficients. We show that for any \(k \in \mathbb{N}\) there exist infinitely many \(n \in \mathbb{N}\) for which 2\(^k + 1\) consecutive integers \(f_n - k, \ldots, f_n, \ldots, f_n + k\) are all divisible by certain primes. Moreover, if the sequence of integers \((f_n)_{n=1}^\infty\) satisfying a linear recurrence relation is unbounded and non-degenerate then for some constant \(c > 0\) the intervals \((|f_n| - c \log n, |f_n| + c \log n)\) do not contain prime numbers for infinitely many \(n \in \mathbb{N}\).

Applying this argument to sequences of integer parts of powers of Pisot and Salem numbers \(\alpha\) we derive a similar result for those sequences as well which implies, for instance, that the shifted integer parts \(\lfloor \alpha^n \rfloor + \ell\), where \(\ell = -k, \ldots, k\) and \(n\) runs through some infinite arithmetic progression of positive integers, are all composite.

Keywords: Linear recurrence sequence; composite integer; integer part; Pisot and Salem numbers.

Mathematics Subject Classification 2010: 11B37, 11B50, 11B83, 11R06

1. Introduction

A classical problem in number theory is to determine whether a given sequence of positive integers contains infinitely many prime numbers or not. This question is wide open for sequences like \(n^2 + 1, n \in \mathbb{N}\), and \(2^n + 1, n \in \mathbb{N} \cup \{0\}\). For the latter sequence (called the sequence of Fermat numbers) it is not even known whether it contains infinitely many composite numbers or not. In 1947, Mills [21] proved that there exists a constant \(\zeta > 1\) such that all the integer parts \(\lfloor \zeta^{3^n} \rfloor\), where \(n \in \mathbb{N}\), are prime numbers. Mills’ result was then generalized in [1, 20]. The results of the latter paper imply that there exist continuum numbers \(\zeta > 2\) for which the integer parts \(\lfloor \zeta^{2^n} \rfloor, n \in \mathbb{N}\), are all prime.
In [15] (see the problem E19 on p. 220), the problem on whether the sequence \([\alpha^n], n \in \mathbb{N}\), where \(\alpha > 1\) is a real number which is not in \(\mathbb{N}\), contains infinitely prime numbers (or infinitely many composite numbers) is raised. More generally, one may ask the same questions for the sequence \([\xi \alpha^n], n \in \mathbb{N}\), where \(\xi > 0\) and \(\alpha > 1\). We remark that, with \(\xi\) introduced, already for \(\alpha \in \mathbb{N}\) these questions become very difficult.

The part of the question concerning prime numbers is completely out of reach. It may seem a bit surprising, but almost nothing is known about the part of the question concerning infinitely many composite numbers in a sequence as well. For instance, one version of the questions considered by van der Poorten [24] (see also [2]) is whether there is an infinite chain of prime numbers when one starts with a prime number written in base \(b\) and then adds infinitely many digits to the right. The question is whether each of the obtained numbers can be a prime number. This is equivalent to the existence of \(\xi > 0\) for which the integer parts \(\lfloor \xi b^n \rfloor\) are prime for all \(n \in \mathbb{N}\). This question is still open. The results established by Forman, Shapiro and Sparer in [13, 23] and subsequently by the author and Novikas in [9] deal with some special rational numbers \(\alpha\). In [9], it was proved, for instance, that the sequence \(\lfloor \xi \alpha^n \rfloor, n \in \mathbb{N}\), contains infinitely many composite numbers for any \(\xi > 0\) when \(\alpha \in \{2, 3, 4, 5, 6, 7, 3/2, 4/3, 5/4\}\). Note that this implies that in the above mentioned problem of van der Poorten the base \(b\) of a potential infinite chain of primes should be at least 8.

For \(\xi = 1\) some algebraic irrational values (for instance, all Pisot and Salem numbers \(\alpha\)) can be added to this list; see the papers of Cass [4], the author [5, 7, 8] and Zaimi [26]; see also [18] for some other arithmetical problems concerning the sequence \([\alpha^n], n \in \mathbb{N}\), with algebraic \(\alpha > 1\). Recall that an algebraic integer \(\alpha > 1\) is a Pisot (respectively, Salem) number if its conjugates over \(\mathbb{Q}\) (if any) all lie in the open unit disc \(|z| < 1\) (respectively, in the closed unit disc \(|z| \leq 1\) with at least two conjugates lying on the circle \(|z| = 1\)).

In this paper, let \((f_n)_{n=1}^{\infty}\) be a sequence of integers satisfying the linear recurrence relation

\[
 f_n = a_d f_{n-1} \cdots + a_0 f_{n-d} \tag{1.1}
\]

for each \(n = d+1, d+2, d+3, \ldots\), where \(d \in \mathbb{N}, a_i \in \mathbb{Z}\) for \(i = 0, \ldots, d-1, a_0 \neq 0\). To avoid bounded sequences we assume that

\[
 \limsup_{n \to \infty} |f_n| = \infty. \tag{1.2}
\]

Recall that the sequence \((f_n)_{n=1}^{\infty}\) defined in (1.1) is called non-degenerate if no quotient of two distinct roots of its characteristic polynomial

\[
 P_f(x) := x^d - a_d - 1 x^{d-1} - \cdots - a_0 \in \mathbb{Z}[x] \tag{1.3}
\]

(which may have multiple roots) is a root of unity.
We first prove the following general theorem.

Theorem 1.1. Let \((f_n)_{n=1}^\infty\) be a sequence satisfying (1.1) and (1.2).

(i) Then, given a positive integer \(k\) there exist a collection of (not necessarily distinct) prime numbers \(p_\ell\), where \(\ell = -k, \ldots, k\), and two positive integers \(m, q\) such that for each \(\ell \in \{-k, \ldots, k\}\) and each integer \(r \geq 0\), the number \(f_{m+q} + \ell\) is divisible by \(p_\ell\).

(ii) If, in addition, \((f_n)_{n=1}^\infty\) is non-degenerate then there is a constant \(c > 0\) depending on \(d, a_{d-1}, \ldots, a_0\) only such that the intervals

\[
(|f_n| - c \log n, |f_n| + c \log n)
\]

do not contain prime numbers for infinitely many \(n \in \mathbb{N}\).

In particular, when \((f_n)_{n=1}^\infty\) is an increasing sequence of positive integers satisfying (1.1), Theorem 1.1 implies that the \(2k + 1\) consecutive numbers \(f_n - k, \ldots, f_n, \ldots, f_n + k\) are all composite for infinitely many \(n \in \mathbb{N}\). Therefore,

\[
\limsup_{n \to \infty} \min_{p \in P} |f_n - p| = \infty,
\]

where \(P := \{2, 3, 5, \ldots\}\) is the set of all prime numbers. Moreover, by part (ii) of Theorem 1.1 if the sequence of positive integers \((f_n)_{n=1}^\infty\) satisfies (1.1), (1.2) and is non-degenerate then the inequality

\[
\min_{p \in P} |f_n - p| \geq c \log n
\]

holds for infinitely many \(n \in \mathbb{N}\).

It would be of interest to show that

\[
\liminf_{n \to \infty} \min_{p \in P} |f_n - p| < \infty,
\]

but already for the sequence of powers of 2 the corresponding inequality

\[
\liminf_{n \to \infty} \min_{p \in P} |2^n - p| < \infty
\]

seems to be out of reach. Note that the latter inequality is equivalent to the existence of \(k \in \mathbb{N}\) such that the interval \([2^n - k, 2^n + k]\) contains a prime number for infinitely many \(n \in \mathbb{N}\). Of course, this statement would follow from the infinitude of Mersenne primes or Fermat primes.

It seems likely that the length \(2c \log n\) of the interval \((|f_n| - c \log n, |f_n| + c \log n)\) that appears in Theorem 1.1(ii) cannot be increased by a lot. For instance, for the sequence of \(d\)th powers \(f_n = n^d\), where \(d \in \mathbb{N}\), satisfying the linear recurrence with characteristic polynomial \((x - 1)^{d+1}\) the best known function in
Theorem 1.1(ii) is
\[c \log n (\log \log n)(\log \log \log \log n) \]
\[(\log \log \log n)^2 \]
This was recently proved in [19]; see also [12].

From Theorem 1.1 we will derive the following.

Theorem 1.2. Let \(\alpha \neq 0 \) be an algebraic integer of degree \(d \) with conjugates \(\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d \) over \(\mathbb{Q} \) which is not a root of unity. Set
\[S_n := \alpha^n_1 + \cdots + \alpha^n_d \]
for \(n \in \mathbb{N} \). Then, for any \(k \in \mathbb{N} \) the \(2k + 1 \) consecutive integers
\[S_n - k, \ldots, S_n, \ldots, S_n + k \]
are all positive and composite for infinitely many \(n \in \mathbb{N} \).

An important ingredient in the proof of Theorem 1.2 is Lemma 2.6 below, where we show that \(S_n \) can be chosen to be positive when \(n \) runs over some subsequence of an arithmetic progression.

Sometimes, e.g., when \(P_f(x) \) is irreducible and has a unique dominating root, i.e. either \(\rho > 1 \) or \(-\rho \) is the root of \(P_f \) and its other roots are all in the open disc \(|z| < \rho \), the conditions of positivity and non-degeneracy of the sequence \((S_n)_{n=1}^\infty \) hold automatically. In particular, one has the following corollaries.

Corollary 1.3. Let \(\alpha \) be a Salem number. Then, for any \(k \in \mathbb{N} \) there exist \(m, q \in \mathbb{N} \) such that for each \(r \in \mathbb{N} \) the \(2k + 1 \) consecutive integers
\[[\alpha^m + qr] - k, \ldots, [\alpha^m + qr], \ldots, [\alpha^m + qr] + k \]
are all composite. Furthermore, there is a constant \(c = c(\alpha) > 0 \) such that the intervals
\[(\alpha^n - c \log n, \alpha^n + c \log n) \]
do not contain prime numbers for infinitely many \(n \in \mathbb{N} \).

For Pisot numbers this result can be given in a stronger form.

Corollary 1.4. Let \(\alpha \) be a Pisot number, and let \(G \in \mathbb{Q}[z] \) be a polynomial with positive leading coefficient satisfying \(G(n) \in \mathbb{Z} \) for each \(n \in \mathbb{N} \). Then, for any \(k \in \mathbb{N} \) there exist \(m, q \in \mathbb{N} \) such that for each \(r \in \mathbb{N} \) the \(2k + 1 \) consecutive integers
\[[G(m + qr)\alpha^m + qr] - k, \ldots, [G(m + qr)\alpha^m + qr], \ldots, [G(m + qr)\alpha^m + qr] + k \]
are all composite. Furthermore, there is a constant \(c = c(G, \alpha) > 0 \) such that the intervals
\[(G(n)\alpha^n - c \log n, G(n)\alpha^n + c \log n) \]
do not contain prime numbers for infinitely many \(n \in \mathbb{N} \).
For a quadratic Pisot number α Cass showed that the integer parts $[\alpha^n]$, $n \in \mathbb{N}$, can only rarely be prime; see [4]. The results in [5, 23] are also weaker than the ones given in the above corollaries (and, moreover, they have been proved for $k = 0$ only). Corollary [4] strengthens the corresponding result of [9] asserting that $|G(n)\alpha^n|$ are composite for infinitely many $n \in \mathbb{N}$.

With arbitrary $\xi > 0$ the results are not so strong as those in Theorem [22] and Corollary [4]. The next theorem implies that for $\alpha = 2$ two consecutive numbers are both composite for infinitely many $n \in \mathbb{N}$.

Theorem 1.5. For any $\xi > 0$ there are infinitely many $n \in \mathbb{N}$ for which the numbers $[\xi 2^n]$ and $[\xi 2^n] + 1$ are both composite.

In the next section, we shall give some auxiliary statements. Then, in Sec. 3, we will prove all the results stated above.

2. Auxiliary Lemmas

The following lemma is standard.

Lemma 2.1. Let $(f_n)_{n=1}^{\infty}$ be a sequence of integers satisfying the linear recurrence relation (1.1) for each $n = d + 1, d + 2, d + 3, \ldots$, where $d \in \mathbb{N}$, $a_i \in \mathbb{Z}$ for $i = 0, \ldots, d - 1$, $a_0 \neq 0$, and let p be a prime number. Then, for each $n_0 \geq |a_0|^d$ the sequence $(f_n)_{n=n_0}^{\infty}$ is purely periodic modulo p with period at most p^d.

Proof. Consider the vectors $v_n := (f_n, f_{n+1}, \ldots, f_{n+d-1}) \in \mathbb{Z}^d$, where $n \in \mathbb{N}$. Such vectors can take at most p^d distinct values modulo p. So, there exist $m, T \in \mathbb{N}$ satisfying $m + T \leq p^d + 1$ and $v_m = v_{m+T}$ modulo p. Hence, $f_{m+j} = f_{m+j+T}$ modulo p for $j = 0, 1, \ldots, d - 1$. The relation (1.1) implies that $f_{m+d} = f_{m+d+T}$ modulo p, and hence $v_{m+1} = v_{m+1+T}$ modulo p. On applying this argument step by step, we deduce that $f_{m+j} = f_{m+j+T}$ modulo p for each integer $j \geq 0$. Hence, the sequence $(f_n)_{n=n_0}^{\infty}$ is purely periodic modulo p with (not necessarily smallest) period $T \leq p^d$.

If p does not divide a_0 then, by the same argument as above, one can easily see that $(f_n)_{n=1}^{\infty}$ is purely periodic modulo p (and so is $(f_n)_{n=n_0}^{\infty}$ for any $n_0 \in \mathbb{N}$). In the alternative case, $p|a_0$, in view of

$$n_0 \geq |a_0|^d \geq p^d \geq p^d + 1 - T \geq m$$

the assertion of the lemma also follows.

The next theorem is due to Kronecker (see [15] for the original source or, e.g., [22, Theorem 2.5]).

Theorem 2.2. Let $\alpha \neq 0$ be an algebraic integer which is not a root of unity. Then, the maximal modulus of its conjugates over \mathbb{Q} is strictly greater than 1.
Let \(\|x\| \) be the distance from a real number \(x \) to the nearest integer. The statement below is a version of Kronecker’s approximation theorem. See [17] for the original paper and also a recent survey of Gonek and Montgomery [14] which contains a long list of references on this problem.

Theorem 2.3. Let \(1, \omega_1, \ldots, \omega_s \in \mathbb{R} \) be linearly independent over \(\mathbb{Q} \), and let \(b_1, \ldots, b_s \in \mathbb{R} \). Then, for any \(\varepsilon > 0 \) there are infinitely many \(n \in \mathbb{N} \) for which \(\|n\omega_j + b_j\| < \varepsilon \) for each \(j = 1, \ldots, s \).

We will also need the following theorem.

Theorem 2.4. If \(F \in \mathbb{Z}[z] \) is an irreducible polynomial which has \(m \geq 2 \) roots on a circle \(|z| = R > 0 \), at least one of which is real, then one has \(F(z) = G(z^m) \), where the polynomial \(G \in \mathbb{Z}[z] \) has at most one real root on any circle in the plane.

Theorem 2.4 was proved by Ferguson in [11], although its partial case (which we actually use below) was earlier obtained by Boyd in [3].

Next, applying Theorem 2.4 we will derive the following.

Lemma 2.5. Let \(\alpha \neq 0 \) be an algebraic number of degree \(d \geq 1 \). Then, there are a positive integer \(t \) and a positive integer \(k \leq d \), which is either 1 or even, i.e. \(k = 2l \), \(l \in \mathbb{N} \), such that for each \(v \in \mathbb{N} \) the algebraic number \(\alpha^{tv} \) has exactly 1 conjugate with largest modulus which is positive (when \(k = 1 \)) or exactly \(l \) pairs of complex conjugate numbers conjugate to \(\alpha^{tv} \) over \(\mathbb{Q} \) with largest moduli (when \(k = 2l \)).

Proof. Let \(\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d \) be the conjugates of \(\alpha \) over \(\mathbb{Q} \). Put

\[
\rho := \max_{1 \leq j \leq d} |\alpha_j|. \tag{2.1}
\]

Without restriction of generality we may assume that \(\rho = |\alpha| \). Take the smallest \(t \in \mathbb{N} \) for which \(\alpha^t \) is non-degenerate, i.e. no quotient of two distinct conjugates of \(\alpha^t \) over \(\mathbb{Q} \) is a root of unity. Suppose exactly \(k \) conjugates of \(\alpha^t \) have moduli \(\rho^l \).

Assume first that \(\alpha^t \) is real. Then, \(\alpha^t = \pm \rho^l \). Furthermore, by Theorem 2.4 \(\alpha^t \) must be the only conjugate on the circle \(|z| = \rho^l \), since, by the choice of \(t \), all other conjugates of \(\alpha^t \) (if any) must have moduli strictly smaller than \(\rho^l \). In case \(\alpha^t < 0 \), we can replace \(t \) by \(2t \), so that one can assume that \(\alpha^t = \rho^l > 0 \) is the only conjugate of \(\alpha^t \) on the circle \(|z| = \rho^l \). However, then for any \(v \in \mathbb{N} \) the only conjugate of \(\alpha^{tv} \) with the largest modulus \(\rho^{vl} \) will be \(\alpha^{tv} = \rho^{vl} \) itself, and hence \(k = 1 \).

Alternatively, suppose that \(\alpha^t \) is nonreal. Then, by Theorem 2.4 again, \(\alpha^t \) has no real conjugates on the circle \(|z| = \rho^l \). Hence, \(\alpha^t \) must have \(k = 2l \), where \(l \in \mathbb{N} \), conjugates on \(|z| = \rho^l \). By the choice of \(t \), for any \(v \in \mathbb{N} \) the number \(\alpha^{tv} \) also has \(2l \) conjugates on the circle \(|z| = \rho^{vl} \) which are all nonreal. (Otherwise, for some conjugate \(\beta \) of \(\alpha^t \) on \(|z| = \rho^l \) we would obtain \(\beta^v = \beta \), which is impossible, since the quotient \(\beta/\beta \) is not a root of unity.) This completes the proof of the lemma. \(\square \)
Now, we can state the main result of this section.

Lemma 2.6. Let \(\alpha \neq 0 \) be an algebraic integer which is not a root of unity with conjugates \(\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d \) over \(\mathbb{Q} \), and let \(c > 0 \). Then, there exists a positive integer \(m \) such that \(S_m > c \). (Here, \(S_n = \sum_{j=1}^{d} \alpha_j^n \) for \(n \in \mathbb{N} \).) Moreover, for any \(q \in \mathbb{N} \) there are some integers \(r_0 = 0 < r_1 < r_2 < r_3 < \cdots \) such that the sequence \((S_{m+mr})_{n=0}^{\infty} \) consists of positive integers and is increasing.

Below, in the proof of Lemma 2.6 for a given \(\alpha \) first one chooses the integers \(m \) (which depends only on \(\alpha \) and \(u \neq 1 \) only if \(k \) described in Lemma 2.5 is greater than 1) and a large integer \(d \) (divisible by \(tu \)), then the integer \(q \) which depends on \(m \) and, finally, the sequence of integers \(r_0 = 0 < r_1 < r_2 < r_3 < \cdots \).

Proof. Let \(t, k \) be positive integers as described in Lemma 2.5 and let \(\rho = |\alpha| \) be as defined in (2.1). Put \(d_1 \) for the degree of \(\alpha^t \) over \(\mathbb{Q} \) and \(d_2 := d/d_1 \in \mathbb{N} \).

Suppose first that \(k = 1 \). Then, by Lemma 2.5 for any \(v \in \mathbb{N} \) the number \(\alpha^v = \rho^v \) is positive. All its other conjugates (if any, i.e. if \(d_1 > 1 \)) lie in a disc \(|z| \leq \rho_1^v \), where \(0 < \rho_1 < \rho \) and \(\rho_1 \) depends only on \(\alpha \) by Theorem 2.4. \(\rho > 1 \).

Observe that \(S_v \) equals \(d_2 \) times the sum of \(d_1 \) conjugates of \(\alpha^v \) over \(\mathbb{Q} \) and bounding the moduli of other \(d_1 - 1 \) conjugates of \(\alpha^v \) by \(\rho_1^v \), we get

\[
|S_v - d_2 \rho^v| \leq d_2(d_1 - 1)\rho_1^v. \tag{2.2}
\]

Now, selecting \(v = rN \) with \(N \in \mathbb{N} \) (which is a sufficiently large integer), \(r \in \mathbb{N} \) and \(m = tN \) from (2.2) we derive that \(S_m > c \) and in view of \(d_2(d_1 - 1) \leq d \)

\[
|S_m - d_2 \rho^m| \leq d\rho_1^m. \tag{2.3}
\]

In particular, the inequality (2.3) implies that the sequence \((S_m)_{n=1}^{\infty} \) is increasing provided that

\[
d_2 \rho^{m} + d\rho_1^m < d_2 \rho^{m(r+1)} - d\rho_1^{m(r+1)}.
\]

Dividing both sides by \(\rho^m \) we obtain

\[
d_2 + d(\rho_1/\rho)^m + d\rho_1^m(\rho_1/\rho)^m < d_2 \rho^m. \tag{2.4}
\]

This is clearly true if \(N \) (and so \(m \)) is large enough, because \(\rho > 1 \) and \(0 < \rho_1 < \rho \), and so the left-hand side of (2.4) does not exceed \(d_2 + d + d\rho_1^m < 3d\max(1, \rho_1)^m \).

Selecting \(r_j = j \) for \(j \in \mathbb{N} \) we conclude the proof of the lemma in case \(k = 1 \).

From now on we suppose that \(k = 2l \) with \(l \in \mathbb{N} \). Set \(m = tN \), where \(N \in \mathbb{N} \) is a large multiple of \(u \) which will be chosen later (\(u \) will depend of \(\alpha \) only). This time, by Lemma 2.5 with \(v = 1 \), \(\alpha^t \) has \(2l \) conjugates of the form \(\rho e^{\pm t\gamma_i} \), \(i = 1, \ldots, l \), where \(0 < \gamma_i < \pi \). Therefore, as above for each \(w \in \mathbb{N} \) we find that

\[
|S_{mw} - d_2 \rho^{mw} (\cos(Nw\gamma_1) + \cdots + \cos(Nw\gamma_l))| \leq d_2(d_1 - 2l)\rho_1^{mw}. \tag{2.5}
\]

Our aim is to choose \(w_j = 1 + qr_j \) with certain \(r_j \in \mathbb{N} \) (and \(r_0 = 0 \)) such that \(\cos(Nw_j\gamma_i) \geq 1/2 \) for \(j \geq 0 \) and \(i = 1, \ldots, l \). Assuming that this inequality holds,
namely, $1/2 \leq \cos(Nw_j \gamma_i) \leq 1$, one can bound the term on the left-hand side of (2.5) as follows:

$$d_2 \rho^m \geq 2d_2 \rho^m \geq d_2 \rho^m (\cos(Nw_j \gamma_1) + \cdots + \cos(Nw_j \gamma_l)) \geq d_2 \rho^m (l/2) \geq \rho^m.$$

Clearly, $d_2 (d_1 - 2l) \rho^m \leq d_1 \rho^m$. Hence, by (2.5), selecting $u_0 = 1$ we deduce that $S_n \geq \rho^m - d_1 \rho^m > e$. Furthermore, this yields

$$S_n < S_{n+m qr_1} < S_{n+m qr_2} < S_{n+m qr_3} < \cdots$$

provided that

$$d_1 \rho^m + d_1 \rho^m < \rho^m + m qr_{j1} - d_1 \rho^m.$$

As above, dividing both sides by ρ^m we find that this is true for each sufficiently large m. This proves (2.6) if such integers $r_0 = 0 < r_1 < r_2 < r_3 < \cdots$ exist.

It remains to choose u and to establish the inequality

$$\cos(N(1 + qr_j) \gamma_i) \geq 1/2$$

for $i = 1, \ldots, l$ and some integers $r_0 = 0 < r_1 < r_2 < \cdots$.

For this, we consider the set $X := \{x_1, \ldots, x_l\}$, where $x_i := \gamma_i/(2\pi)$ for $i = 1, \ldots, l$. All the numbers in this set are irrational, since otherwise some powers of $\alpha_i^r = e^{i \gamma_i}$ and α_i^s are equal, and so their quotient is a root of unity, contrary to the definition of t. Take the largest integer s for which the numbers 1 and some s numbers from the set X, say $y_1, \ldots, y_s \in X$, are linearly independent over \mathbb{Q}. Then, there exists an integer $u \in \mathbb{N}$ (depending on α only) such that each ux_i ($i = 1, \ldots, \ell$) can be uniquely expressed as $a_i,0 + a_i,1 y_1 + \cdots + a_i,s y_s$ with $a_i,s \in \mathbb{Z}$, where $u \in \mathbb{N}$ and all $a_i,s \in \mathbb{Z}$ depend on α only. (In case $x_i \in Y$ we have $a_i,s = u$ and other $a_i,j = 0$, since $ux_i = u x_i$.) Fix this u, and let A be the maximum among the moduli of all integers a_i,j.

We first prove (2.7) for $r = r_0 = 0$. Fix a small positive number ε and take a large $M \in \mathbb{N}$ for which $\|My_i\| < \varepsilon$ for every $i = 1, \ldots, s$. (Such M exists, by Dirichlet’s approximation theorem, and, moreover, by Theorem 2.3.) Then, $\|Mux_i\| < \varepsilon$ for each $x_i \in Y$. For $x_i \in X \setminus Y$, we can write $ux_i = a_i,0 + a_i,1 y_1 + \cdots + a_i,s y_s$, and so

$$\|Mux_i\| \leq \sum_{j=1}^s \|Ma_{i,j} y_j\| \leq \sum_{j=1}^s |a_{i,j}| \varepsilon \leq s A \varepsilon.$$

Hence, $\|Mux_i - 2\pi \ell_i\| \leq s A \varepsilon$ for $\ell_i \in \mathbb{Z}$, which implies $\cos(Mux_i) \geq 1/2$ for $i = 1, \ldots, l$ and ε small enough. Therefore, with the choice $N = Mu$, the inequality (2.7) holds for $r_0 = 0$ and $i = 1, \ldots, l$.

Next, with this choice of N, namely, $N = Mu$, we will establish (2.7) for some positive integers $r_1 < r_2 < r_3 < \cdots$. As the numbers $1, y_1, \ldots, y_s$ are linearly independent, there exist $a_{i,j} \in \mathbb{Z}$ such that

$$a_{i,0} + a_{i,1} y_1 + \cdots + a_{i,s} y_s = 0.$$

Then, for $u \geq 1$,

$$\|Mux_i - 2\pi \ell_i\| \leq u \varepsilon \leq 2 \pi \varepsilon,$$

where $\ell_i \in \mathbb{Z}$.

Using (2.7), we conclude that

$$\cos(Nu x_i) \geq 1/2$$

for $i = 1, \ldots, l$, $u \in \mathbb{N}$, and $\varepsilon > 0$ small enough.
3. Proofs of the Main Results

independent over \(\mathbb{Q} \), by Theorem 2.3 applied to \(\omega_i := MQy_i \) and \(b_i := M_y_i \), we find that for each \(\varepsilon > 0 \)

\[
\|MQr_jy_i + M_y_i\| < \varepsilon
\tag{2.8}
\]

for \(i = 1, \ldots, s \) and some \(r_1 < r_2 < r_3 < \cdots \in \mathbb{N} \). In particular, when \(x_i = \gamma_i/(2\pi) \in Y \) selecting \(\varepsilon < 1/(6\alpha) \) from (2.8) we find that

\[
|N(1 + qr_j)\gamma_i - 2\pi\ell| = |M\alpha qr_j\gamma_i + M\alpha y_i - 2\pi\ell| < 2\pi\varepsilon < \pi/3
\]

for each \(\ell \in \mathbb{Z} \). This implies (3.1) for every \(i \) satisfying \(x_i \in Y \).

Otherwise, when \(x_i \in X \setminus Y \) using the expression \(u_i = a_i,0 + a_1y_i + \cdots + a_i,sy_i \) and \(N = Mu \) we obtain

\[
N(1 + qr_j)x_i = M\alpha_i,0(qr_j + 1) + M(a_i,1y_jqr_j + a_i,1y_i) + \cdots + (a_i,sy_jqr_j + a_i,sy_i).
\]

Since \(M\alpha_i,0(qr_j + 1) \in \mathbb{Z} \) and, by (2.8), \(\|a_1,1M_y qr_j + a_i,1M_y_i\| \leq |a_i,1|\varepsilon \), etc., this yields

\[
\|N(1 + qr_j)x_i\| \leq (|a,1| + \cdots + |a_i,s|)\varepsilon \leq s\varepsilon.
\]

So, selecting \(\varepsilon < 1/(6s\alpha) \), we derive that \(|N(1 + qr_j)\gamma_i - 2\pi\ell| \leq 2\pi s\varepsilon < \pi/3 \) for any \(\ell \in \mathbb{Z} \). Hence, the inequality (2.7) holds for \(i = 1, \ldots, l \) such that \(x_i \notin Y \) as well. Therefore, (2.7) is true for each \(i = 1, \ldots, l \) and infinitely many integers \(r_0 = 0 < r_1 < r_2 < r_3 < \cdots \).

3. Proofs of the Main Results

Proof of Theorem 1.1

Fix \(k \in \mathbb{N} \) and take \(m \) so large that \(m \geq |a,0|^d \) and \(|f_m| \geq k + 2 \). Then, \(|f_m + \ell| \geq 2 \) for each \(\ell \in \{-k, \ldots, 0, \ldots, k\} \). Let \(p_{\ell} \) be the smallest prime divisor of \(f_m + \ell \). By Lemma 2.4 and the choice of \(m \), the sequence \((f_{n})_{n=m}^{\infty} \) is purely periodic modulo \(p_{\ell} \). Let \(t_\ell \) be the length of the smallest period of \((f_{n})_{n=m}^{\infty} \) modulo \(p_{\ell} \).

Consider the arithmetic progression \(A := \{m + qr\}, r = 0, 1, 2, \ldots \), where

\[
q := \prod_{\ell} t_\ell
\tag{3.1}
\]

and the product in (3.1) is taken over \(\ell \in \{-k, \ldots, 0, \ldots, k\} \) with distinct \(p_{\ell} \). We claim that for each \(n \in A \) the number \(f_n + \ell \) modulo \(p_{\ell} \) is 0. Indeed, in view of \(t_\ell|(n - m) \) we find that \(f_n = f_m \) modulo \(p_{\ell} \). Also, \(p_{\ell}|(f_m + \ell) \), by the choice of \(p_{\ell} \). Hence, for each \(\ell \in \{-k, \ldots, 0, \ldots, k\} \) and each \(n \in A \) the number \(f_n + \ell \) is divisible by \(p_{\ell} \), as claimed. This completes the proof of part (i).

To prove part (ii) we will show that for each sufficiently large \(m \) there is a positive integer

\[
n \leq \varepsilon c_1 k,
\tag{3.2}
\]

where \(k := |f_m| - 2 \) and \(c_1 \) depends only on \(d \) and the characteristic polynomial \([1,3] \), such that the numbers

\[
|f_n| - k, \ldots, |f_n|, \ldots, |f_n| + k
\tag{3.3}
\]
are all positive and composite. Then, the distance from \(|f_n|\) to the nearest prime is at least \(k + 1 > c \log n\), where \(c = 1/c_1\), which implies the assertion of the theorem. Throughout, the constants \(c_2, c_3, \ldots\) depend only on \(d\) and the polynomial (1.3).

Take \(m \geq |a_0|^d\). Then, by part (i) of Theorem 1.1 (see also its proof above, where \(p_\ell\) is defined to be the smallest prime divisor of \(f_m + \ell\) for each \(\ell = -k, \ldots, 0, \ldots, k\)) the number \(f_n + \ell\) is divisible by \(p_\ell\) for \(n = m + qr\), where \(q\) is given in (3.1) and \(r\) is an arbitrary positive integer.

By Lemma 2.1, each \(t_\ell\) is bounded above by \(p_\ell^d\). The largest prime among \(p_\ell\), \(\ell = -k, \ldots, k\), does not exceed \(2^k + 2\) (and hence \(2^k + 1\), since \(2^k + 2\) is not a prime).

Thus, by (3.1) and the prime number theorem, we derive that
\[
q \leq \prod_{p \leq 2^k + 1} p^d e^{\theta(2k + 1)} \leq e^{3kd},
\]
where \(\theta(x) := \sum_{p \leq x} \log p\). Selecting \(r = \lfloor e^{3kd}/q \rfloor \in \mathbb{N}\), we further find that
\[
e^{3kd}/2 < qr < e^{3kd}.
\] (3.4)

Now, let us take \(n = m + qr\). Then, each of the numbers
\[
f_n - k, \ldots, f_n, \ldots, f_n + k
\] (3.5) is divisible by one of the primes \(p_\ell\), where \(p_\ell \leq 2^k + 1\). Consequently, the numbers (3.3) are all composite provided that
\[
|f_n| > 3k + 1.
\] (3.6)
(Indeed, in case \(f_n < 0\) the list (3.3) is the same list of numbers (3.5) with opposite signs.)

Below, we shall use the fact that for any linear non-degenerate sequence \((f_n)_{n=1}^\infty\) and any \(\delta > 0\) there is a constant \(n_0\) such that
\[
|f_N| \geq \rho^{(1-\delta)N}
\] (3.7) for \(N > n_0\) (see [10, Theorem 2.3]). Here, \(\rho\) is the largest modulus of the roots of the characteristic polynomial \(P_f(x)\) defined in (1.3).

We now consider two cases: \(\rho > 1\) and \(\rho = 1\). In the first case, by (3.7), \(|f_N| \geq \rho^{N/2}\) for each sufficiently large \(N\). Hence, using the fact that \(\rho - 1\) is bounded below in terms of \(d\) only (see, e.g., [25]),
\[
N \leq \frac{2 \log |f_N|}{\log \rho} \leq c_2 \log |f_N|.
\] (3.8)

In the second case, when \(\rho = 1\), by Theorem 2.2 and by the conditions of part (ii) on the sequence \((f_n)_{n=1}^\infty\), the polynomial (1.3) must be of the form \((x + 1)^d\) or \((x - 1)^d\), where \(d \geq 2\). Thus, \(f_N\) must be equal to \(G(N)\), where \(G \in \mathbb{Q}[x]\) is a polynomial of degree at least \(\ell := d - 1 \geq 1\) satisfying \(G(N) \in \mathbb{Z}\) for each \(N \in \mathbb{N}\). If \(\ell \in \mathbb{N}\) is the degree of \(G\) and \(a \neq 0\) is its coefficient for \(x^\ell\) we clearly find that
\[
|f_N| = |G(N)| \geq \frac{|a|N^\ell}{2} \geq \frac{|a|N}{2}.
\]
and so

$$N \leq c_3 |f_N|.$$ \hfill (3.9)

Now, applying (3.8) and (3.9) to $N = m$, we find that $m \leq c_4 |f_m| = c_4 (k + 2)$. Combining this with the upper bound in (3.4) we deduce

$$n = m + qr \leq c_4 (k + 2) + e^{kd} < e^{kd}$$

for k large enough. This proves the inequality (3.2).

Similarly, applying (3.8) and (3.9) to $N = n + m$, in view of the lower bound in (3.4) we deduce

$$|f_n| \geq c_5 n > c_5 q m > c_6 e^{kd}.$$ \hfill (3.6)

This clearly implies the bound (3.6) for k large enough and so completes the proof of part (ii) of the corollary.

Proof of Theorem 1.1. By Lemma 2.6 (with $c = k + 2$), we can take m such that $S_m > k + 2$. With this m, let us take q as in Theorem 1.1(i). Then, by Theorem 1.1(i), for each $\ell \in \{−k, \ldots, 0, \ldots, k\}$ and each integer $r \geq 0$, the integer $S_{m+qr} + \ell$ is divisible by p_ℓ. By Lemma 2.6 there are positive integers $r_1 < r_2 < r_3 < \cdots$ such that the sequence of $(S_{m+qr_i})_{i=0}^\infty$, where $r_0 = 0$, consists of positive integers and is increasing. Hence, starting with some $i \in \mathbb{N}$ such that $S_{m+qr_i} > k + \max_{-k \leq \ell \leq k} p_\ell$, the shifts of all its elements $S_{m+qr_i} + \ell$, where $\ell \in \{-k, \ldots, k\}$ and $j = i, i + 1, i + 2, \ldots$, are all positive composite integers.

Proof of Corollary 1.3. For a Salem number α we have $|S_n − |\alpha^n|| \leq d$. So, for a given $d = \deg \alpha$ applying the argument of the proof of Theorem 1.2 to the sequence $S_{m+qr}, r \in \mathbb{N}$, and $k + d$ (instead of k) we find that $|\alpha^{m+q} − k| \geq S_{m+qr} - k - d$ and $|\alpha^{m+q} + k| \leq S_{m+qr} + k + d$. This implies the first part of the corollary. The second part follows immediately from Theorem 1.2(ii).

Proof of Corollary 1.4. Let α be a Pisot number of degree $d \geq 1$ with conjugates $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d$, and let G be a polynomial of degree g. Then, the integer sequence $f_n := \sum_{j=1}^d G(n)\alpha_j^n$ satisfies the linear recurrence (1.1) with characteristic polynomial

$$(z - \alpha_1)^{g+1} \cdots (z - \alpha_d)^{g+1}.$$ \hfill (3.1)

Since α is a Pisot number, for a large enough we obtain $|\sum_{j=2}^d G(n)\alpha_j^n| < 1$. Hence, $f_n = [G(n)\alpha^n]$ for $f_n = [G(n)\alpha^n] + 1$ and also $f_n \rightarrow \infty$ as $n \rightarrow \infty$. Now, it is clear that for a large enough $f_n < f_{n+1} < f_{n+2} < \cdots$. So, selecting m and q as in part (i) of Theorem 1.1 we get the first assertion by taking a subsequence of $[G(n)\alpha^n], n \in \mathbb{N}$, with indices $n = m + qMr$, where m is large enough, r runs through all positive integers and $M \in \mathbb{N}$ is so large that $[G(m + qM)\alpha^{m+qM}] - [G(m)\alpha^m] > 3k$. The second assertion of the corollary follows from Theorem 1.1(ii).
Proof of Theorem 1.5. Set \(x_n := \lfloor 2^n \rfloor \). Then, \(x_{n+1} - 2x_n = 0 \) or 1. Among two consecutive integers \(x_{n+1} \) and \(x_{n+1} + 1 \) one is even and so composite if \(n \) is large enough. The other one is odd. In both cases, \(x_{n+1} = 2x_n \) and \(x_{n+1} + 1 = 2x_n + 1 \), the odd one is \(2x_n + 1 \). So, it remains to show that \(u_n := 2x_n + 1 \) is composite for infinitely many \(n \in \mathbb{N} \).

Note that

\[
\begin{align*}
u_{n+1} &= 2x_{n+1} + 1 = 2(2x_n + 1) \pm 1 = 2u_n \pm 1.
\end{align*}
\]

Set \(\delta_n := u_{n+1} - 2u_n \in \{-1, 1\} \). Take \(n \) so large that \(u_n > 3 \) is odd and assume that \(u_n, u_{n+1}, \ldots \) are all prime. Then, \(u_n \) modulo 3 is either 1 or \(-1\).

Suppose \(u_n \) modulo 3 is 1. Then, \(\delta_n \) must be \(-1\), since otherwise \(3 \mid u_{n+1} \). Hence, \(u_{n+1} = 2u_n + 1 \) modulo 3 is also 1. By the same argument applied to \(n + 1, n + 2, \ldots \), we find that \(\delta_n = \delta_{n+1} = \cdots = -1 \) and \(u_{n+k} = 2u_{n+k-1} - 1 \) for every \(k \in \mathbb{N} \).

By induction on \(k \), it follows that

\[
\begin{align*}
u_{n+k} &= 2^ku_n - 2^k + 1
\end{align*}
\]

for each \(k \in \mathbb{N} \). Since \(u_n \) is odd, there is a positive integer \(k \) for which \(u_n \mid (2^k - 1) \) (for instance, \(k = \varphi(u_n) \)). Thus, \(u_n \mid u_{n+k} \) and \(u_n < u_{n+k} \), so the number \(u_{n+k} \) is composite, contrary to our assumption.

Similarly, if \(u_n \) modulo 3 is 2, we find that \(\delta_n = \delta_{n+1} = \cdots = 1 \) and \(u_{n+k} = 2u_{n+k-1} + 1 \) for every \(k \in \mathbb{N} \). Clearly, this yields

\[
\begin{align*}
u_{n+k} &= 2^ku_n + 2^k - 1
\end{align*}
\]

for each \(k \in \mathbb{N} \). As above, using the fact that \(u_n > 3 \) is odd and taking \(k \in \mathbb{N} \) for which \(u_n \mid (2^k - 1) \) we conclude that \(u_n \mid u_{n+k} \), and hence \(u_{n+k} \) must be composite. This completes the proof of the theorem. \(\square \)

References