ON THE LINEAR INDEPENDENCE OF
THE SET OF DIRICHLET EXPONENTS

ARTŪRAS DUBICKAS

Abstract

Given \(k \geq 2 \) let \(z_1, \ldots, z_k \) be transcendental numbers such that \(z_1, \ldots, z_{k-1} \) are algebraically independent over \(\mathbb{Q} \) and \(z_k \notin \mathbb{Q}(z_1, \ldots, z_{k-1}) \), but \(z_k = (az_i + c)/b \) for some \(i \in \{1, \ldots, k-1\} \) and some \(a, b \in \mathbb{N}, \ c \in \mathbb{Z} \) satisfying \(\gcd(a, b) = 1 \). We prove that then there exists a nonnegative integer \(q \) such that the set of so-called Dirichlet exponents \(\log(n + a_j) \), where \(n \) runs through the set of all nonnegative integers for \(j = 1, \ldots, k-1 \) and \(n = q, q + 1, q + 2, \ldots \) for \(j = k \), is linearly independent over \(\mathbb{Q} \). As an application we obtain a joint universality theorem for corresponding Hurwitz zeta functions \(\zeta(s, a_1), \ldots, \zeta(s, a_k) \) in the strip \(\{ s \in \mathbb{C} : 1/2 < \Re(s) < 1 \} \). In our approach we follow a recent result of Mishou who analyzed the case \(k = 2 \).

1. Introduction

For any given complex number \(\alpha \notin \{0, -1, -2, -3, \ldots\} \) we consider the set

\[\mathcal{D}(\alpha) := \{ \log \alpha, \log(1 + \alpha), \log(2 + \alpha), \ldots \}, \]

where \(\log \) stands for the principal branch of the natural logarithm. The set \(\mathcal{D}(\alpha) \) is known as the set of Dirichlet exponents of the Hurwitz zeta function

\[\zeta(s, \alpha) := \sum_{n=0}^{\infty} \frac{1}{(n + \alpha)^s} = \sum_{n=0}^{\infty} e^{-s \log(n + \alpha)}, \]

where \(\alpha \) is a real number in the interval \((0, 1)\). More generally, for each integer \(q \geq 0 \) let us denote

\[\mathcal{D}_q(\alpha) := \{ \log(q + \alpha), \log(q + 1 + \alpha), \log(q + 2 + \alpha), \ldots \}, \]

so that \(\mathcal{D}_0(\alpha) = \mathcal{D}(\alpha) \).

Recall that a (finite or infinite) set of complex numbers \(V \) is linearly dependent over \(\mathbb{Q} \) if there exist some \(m \in \mathbb{N} \), distinct \(v_1, \ldots, v_m \in V \) and nonzero
$r_1, \ldots, r_m \in \mathbb{Q}$ such that $\sum_{j=1}^m r_jv_j = 0$ and linearly independent otherwise. Obviously, if x is a transcendental number then the set $D(x)$ is linearly independent over \mathbb{Q}. The set $D(x)$ for algebraic x have been studied by Cassels [3] (see also [4] and [5]). The question if there is an algebraic number x for which the set $D(x)$ is linearly independent over \mathbb{Q} is still open (see [4], [5] and also [7], [12]). A finite set of distinct complex numbers v_1, \ldots, v_m is algebraically dependent over \mathbb{Q} if there is a nonzero polynomial $P(z_1, \ldots, z_m) \in \mathbb{Q}[z_1, \ldots, z_m]$ such that $P(v_1, \ldots, v_m) = 0$ and algebraically independent otherwise.

The main result of this note is the following:

Theorem 1. Let $k \geq 2$ be an integer and let $x_1, \ldots, x_{k-1}, x_k$ be some transcendental numbers. Suppose that the numbers x_1, \ldots, x_{k-1} are algebraically independent over \mathbb{Q} and $x_k \in \mathbb{Q}(x_1, \ldots, x_{k-1})$, and suppose for each $i = 1, \ldots, k-1$ we have $x_k \neq (ax_i + c)/b$ for $a, b, c \in \mathbb{N}$, $c \in \mathbb{Z}$ satisfying $\text{gcd}(a, b) = 1$. Then there is an integer $q \geq 0$ such that set of Dirichlet exponents

$$D(x_1) \cup \cdots \cup D(x_{k-1}) \cup D_q(x_k)$$

is linearly independent over \mathbb{Q}.

Following the result of Nesterenko [15], the numbers π and e^π are algebraically independent over \mathbb{Q}, so Theorem 1 can be applied to the numbers

$$x_1 := \pi = 3.14159 \ldots, \quad x_2 := e^\pi = 23.14069 \ldots,$$

$$x_3 := x_1^2 + x_2 = \pi^2 + e^\pi = 33.01029 \ldots.$$

Note that the condition $x_k \neq (ax_i + c)/b$ for integers $a > 0$, $b > 0$ and c satisfying $\text{gcd}(a, b) = 1$ cannot be removed from Theorem 1. Indeed, if $x_k = (ax_i + c)/b$ with some $i \in \{1, \ldots, k-1\}$ and a, b, c as above then there exists $d \in \mathbb{N}$ for which $u := (bd + c)/a$ is a positive integer. Thus for each $N \in \mathbb{N}$ we have the identity

$$\frac{x_k + d + aN}{x_k + d + a(N-1)} = \frac{ax_i + c + b(d + aN)}{ax_i + c + b(d + aN - a)} = \frac{x_i + u + bN}{x_i + u + b(N-1)}.$$

Consequently, the four logarithms $\log(x_k + d + aN)$, $\log(x_k + d + a(N-1))$, $\log(x_i + u + bN)$, $\log(x_i + u + b(N-1))$ are linearly dependent over \mathbb{Q}, and hence the set $D_q(x_i) \cup D_q(x_k)$ is linearly dependent over \mathbb{Q} for any $q \in \mathbb{N}$.

As an application of Theorem 1 we shall prove the following joint universality theorem for Hurwitz zeta functions. (Throughout, $\mu(A)$ stands for the Lebesgue measure of the set $A \subseteq \mathbb{R}$.)

Theorem 2. Let x_1, x_2, \ldots, x_k, $k \geq 2$, be real transcendental numbers in the interval $(0,1)$ such that for some integers $q_1, q_2, \ldots, q_k \geq 0$ the set of Dirichlet exponents

$$D_{q_1}(x_1) \cup D_{q_2}(x_2) \cup \cdots \cup D_{q_k}(x_k)$$

is linearly independent over \mathbb{Q}. For each j in the range $1 \leq j \leq k$ let K_j be a compact subset of the strip \(\{ s \in \mathbb{C} : 1/2 < \Re(s) < 1 \} \) with connected complement and let $f_j(s)$ be a continuous function on K_j which is analytic in the interior of K_j. Then for any $\varepsilon > 0$ we have

\[
\liminf_{T \to \infty} \frac{1}{T} \mu \left\{ \tau \in [0, T] : \max_{1 \leq j \leq k} \max_{s \in K_j} |\zeta(s + i\tau, x_j) - f_j(s)| < \varepsilon \right\} > 0.
\]

The subject of “universality” for Dirichlet L-functions started with the paper of Voronin [16], where he proved that for every positive number ε and every continuous non-vanishing function $f(s)$ in the disc $|s| \leq r$, where $0 < r < 1/4$, which is analytic in $|s| < r$ there exists a number $\tau = \tau(\varepsilon)$ for which $\max_{|s| \leq r} |\zeta(s + 3/4 + i\tau) - f(s)| < \varepsilon$. So certain shifts of zeta function are arbitrarily close to every analytic function. Later, this result have been extended to other L-functions and it was shown that the set of those τ for which the shift of the L-function by $i\tau$ approximates $f(s)$ has positive density; see, e.g., [8], [9] for some references on this. In particular, for the Hurwitz zeta function $\zeta(s, \alpha)$ it was shown that if $\alpha \in (0, 1/2) \cup (1/2, 1)$ is either rational or transcendental number then for any function $f(s)$ which is continuous in a compact set $K \subset \{ s \in \mathbb{C} : 1/2 < \Re(s) < 1 \}$ with connected complement and analytic in the interior of K we have

\[
\liminf_{T \to \infty} \frac{1}{T} \mu \left\{ \tau \in [0, T] : \max_{s \in K} |\zeta(s + i\tau, \alpha) - f(s)| < \varepsilon \right\} > 0
\]

for any given $\varepsilon > 0$ (see [1], [6]).

Later, certain joint universality theorems when instead of one function f we have several analytic functions f_1, \ldots, f_k and approximate them with some shifts of $\zeta(s, x_j)$, $j = 1, \ldots, k$, were obtained in [2], [11], etc. In particular, the joint universality theorem which asserts the conclusion (1) of Theorem 1 under assumption that all k transcendental numbers x_1, \ldots, x_k are algebraically independent follows from the results of Nakamura in [14]. Laurinčikas proved the same statement under weaker assumption that the set of Dirichlet exponents $D(x_1) \cup \cdots \cup D(x_k)$ is linearly independent over \mathbb{Q} (see [10]). This corresponds to the case $q_1 = \cdots = q_k = 0$ in Theorem 2.

The above mentioned result of Nakamura covers the case when the transcendence degree $\text{trdeg}(\mathbb{Q}(x_1, \ldots, x_k)/\mathbb{Q})$ of the field extension $\mathbb{Q}(x_1, \ldots, x_k)/\mathbb{Q}$ (i.e., the largest cardinality of an algebraically independent subset of $\mathbb{Q}(x_1, \ldots, x_k)$ over \mathbb{Q}) is equal to k. On the other hand, when $k \geq 3$ and $2 \leq r \leq k - 1$ the next simple example

\[
x_1 := \alpha, \quad x_2 := \alpha/r, \quad x_3 := (\alpha + 1)/r, \ldots, x_{r+1} := (\alpha + r - 1)/r,
\]

where α and x_j, $j = r + 1, \ldots, k$, are algebraically independent transcendental numbers in the interval $(0, 1)$ (so that $\text{trdeg}(\mathbb{Q}(x_1, \ldots, x_k)/\mathbb{Q}) = k - r \leq k - 2$), shows that the first $r + 1$ Hurwitz zeta functions are linearly dependent

\[
r^j \zeta(s, x_1) = \zeta(s, x_2) + \cdots + \zeta(s, x_{r+1}).
\]
Therefore, no joint universality theorem holds for these k Hurwitz zeta functions $\zeta(s, x_j)$, $j = 1, \ldots, k$. Theorem 2 deals with the remaining case when the transcendence degree of the field extension $Q(x_1, \ldots, x_k)/Q$ is equal to $k - 1$. The case $k = 2$ was recently analyzed by Mishou [13]. We will follow his approach. It seems likely that the conclusion (1) is true for any distinct transcendental numbers $x_1, \ldots, x_k \in (0, 1)$ for which $\text{trdeg}(Q(x_1, \ldots, x_k)/Q) = k - 1$.

2. Proof of Theorem 1

Recall that if $P(z_1, \ldots, z_m) = \sum_{i} p_i z_1^{i_1} \cdots z_m^{i_m} \in \mathbb{C}[z_1, \ldots, z_m]$, where $i = (i_1, \ldots, i_m)$ and $p_i \in \mathbb{C}\setminus\{0\}$, is a nonzero polynomial then its leading coefficient is the coefficient p_i for $z_1^{i_1} \cdots z_m^{i_m}$ such that the vector $j = (j_1, \ldots, j_m)$ is the largest lexicographically among all vectors $i = (i_1, \ldots, i_m)$ with maximal sum $i_1 + \cdots + i_m = \deg P$. For instance, the leading coefficient of the polynomial $P(z_1, z_2) = z_1^4 + 2z_1z_2^4 + 3z_2^5 - z_1z_2$ is equal to 2.

Lemma 3. Suppose that for $m \in \mathbb{N}$ two nonzero polynomials with integer coefficients $P(z_1, \ldots, z_m)$ with positive leading coefficient and $Q(z_1, \ldots, z_m)$, not both constants, are relatively prime. Then there exist infinitely many positive integers t for which

\[(2) \quad P(z_1, \ldots, z_m) + tQ(z_1, \ldots, z_m) = A \prod_{i \in I} (z_i + a_{ij}),
\]

where I is a nonempty subset of the set $\{1, \ldots, m\}$, A is a nonzero integer and $a_{ij} \in \mathbb{N} \cup \{0\}$ (where a_{ij} are not necessarily distinct), if and only if there are $i \in \{1, \ldots, m\}$, $a, b \in \mathbb{N}$, $c \in \mathbb{Z}$, $\gcd(a, b) = 1$ for which $P(z_1, \ldots, z_m) = az_i + c$ and $Q(z_1, \ldots, z_m) = b$.

Proof. For $m = 1$ the lemma was proved by Mishou in [13]. Our proof is different from that given in [13] and works for any $m \in \mathbb{N}$.

The lemma is trivial in one direction. If $P(z_1, \ldots, z_m) = az_i + c$ and $Q(z_1, \ldots, z_m) = b$ with a, b, c as above then there are infinitely many $t \in \mathbb{N}$ for which $c + bt \geq 0$ and $a | (c + bt)$. For each of those t the representation (2) for the polynomial

\[P(z_1, \ldots, z_m) + tQ(z_1, \ldots, z_m) = az_i + c + bt = a(z_i + (c + bt)/a)
\]

holds with $A = a$, $I = \{i\}$ and $\prod_{i \in I} (z_i + a_{ij}) = z_i + (c + bt)/a$.

Assume now that $P, Q \in \mathbb{Z}[z_1, \ldots, z_m]$, not both constants, are relatively prime, and the leading coefficient of P is positive. Assume that there exist infinitely many positive integers t for which (2) holds with $A = A(t) \in \mathbb{Z}\setminus\{0\}$ and $a_{ij} = a_{ij}(t) \in \mathbb{N} \cup \{0\}$. It is clear that the coefficients of the polynomial

\[(3) \quad R_t(z_1, \ldots, z_m) := A(t) \prod_{i \in I} (z_i + a_{ij}(t))
\]
on the right hand side of (2) all have the form \(ut + v \) with some integers \(u, v \) lying in a finite set \(V \). By the condition of the lemma, the nonzero coefficients of \(R_t/A(t) \) are all positive. So if two nonzero coefficients, say \(r_1(t) \) for \(z_1^t \cdots z_m^t \) and \(r_2(t) \) for \(z_1^{t_1} \cdots z_m^{t_m} \), of the polynomial \(R_t \) are unbounded then \(r_1(t) = ut + v \) and \(r_2(t) = u't + v' \) with some integers \(u, u' \neq 0 \). It follows that the modulus of their quotient \(|r_1(t)/r_2(t)| \) is bounded in terms of \(t \). The fact that the quotient of two unbounded coefficients of \(R_t \) must be bounded will be used below several times.

Now we shall prove that all the zeros \(-a_j(t)\) of the polynomial \(R_t \) given in (3) are unbounded in terms of \(t \). For a contradiction assume that \(a_j(t) \) for some fixed pair \(i, j \) is bounded and assume without restriction of generality that \(i = m \). Then \(0 \leq a_{mj}(t) \leq K \) for certain \(K \in \mathbb{N} \). Since \(a_{mj}(t) \) can only take \(K + 1 \) values, we must have \(a_{mj}(t) = a^* \) for some fixed \(a^* \in \{0, 1, \ldots, K\} \) and infinitely many \(t \in \mathbb{N} \). Thus the factor \(z_m + a^* \) occurs in all those polynomials \(R_t = P + tQ \) defined in (2) corresponding to those \(t \). Then the polynomial

\[
R_t(z_1, \ldots, z_{m-1}, -a^*) = P(z_1, \ldots, z_{m-1}, -a^*) + tQ(z_1, \ldots, z_{m-1}, -a^*)
\]

is zero identically. Thus \(Q(z_1, \ldots, z_{m-1}, -a^*) \) must be the zero polynomial. It follows that \(P(z_1, \ldots, z_{m-1}, -a^*) \) is also the zero polynomial. Hence \(Q(z_1, \ldots, z_m) \) and \(P(z_1, \ldots, z_m) \) are both divisible by the same factor \(z_m + a^* \), a contradiction. This proves that all the zeros \(-a_j(t)\) of \(R_t \) in (3) are unbounded, i.e. \(a_j(t) \to \infty \) as \(t \to \infty \). Since \(A(t) \in \mathbb{Z}\setminus\{0\} \), in view of (3) it follows that all the nonzero coefficients of \(R_t \) are also unbounded except possibly for the leading coefficient \(A(t) \).

Next, if the leading coefficient \(A(t) \) is unbounded then \(A(t) \) and \(A(t) \prod_{i \in I} \prod_j a_j(t) \) are two unbounded coefficients of \(R_t \), which is impossible, because their quotient \(\prod_{i \in I} \prod_j a_j(t) \) tends to infinity as \(t \to \infty \). (Recall that, by the fact established above, the quotient of two unbounded coefficients of \(R_t \) must be bounded.) So \(A(t) \) is bounded. Hence the leading coefficient \(A(t) \) of \(R_t = P + tQ \) must be that of \(P \). This yields \(A(t) = a \), where \(a > 0 \) is the leading coefficient of \(P \).

Suppose next that for infinitely many \(t \in \mathbb{N} \) the product

\[
R_t(z_1, \ldots, z_m) = a \prod_{i \in I} \prod_j (z_i + a_j(t))
\]

contains exactly \(r \geq 2 \) not necessarily distinct factors with the same \(i \), say \(z_i + a_{i1}(t), \ldots, z_i + a_{ir}(t) \). Put \(B = B(t) \) for the constant term of the polynomial \(R_t(z_1, \ldots, z_r)/\prod_{j=1}^r(z_i + a_{ij}(t)) \). Then both \(B(t) \prod_{j=1}^r a_j(t) \) and \(B(t) \sum_{j=1}^r a_j(t) \) are the coefficients of the polynomial \(R_t \) corresponding to its constant term and the term for \(z_i^{r-1} \), respectively. They are both unbounded, so their quotient \(\prod_{j=1}^r a_j(t)/\sum_{j=1}^r a_j(t) \) must be bounded. This is not the case, because all \(a_j(t) \) are unbounded, so the product of \(r \geq 2 \) terms \(\prod_{j=1}^r a_j(t) \) divided by their sum \(\sum_{j=1}^r a_j(t) \) tends to infinity as \(t \to \infty \).
The only remaining possibility is that \(R_i(z_1, \ldots, z_m) = a \prod_{i \in I} (z_i + a_i(t)) \) for infinitely many \(t \in \mathbb{N} \). In case \(|I| \geq 2 \) we see that the constant coefficient of \(R_i \) is equal to \(a \prod_{i \in I} a_i(t) \) and the coefficient for \(z_i \), where \(l \in I \), is equal to \(a \prod_{i \in I \setminus \{l\}} a_i(t) \). They both are unbounded, because \(|I| \geq 2 \). But their quotient \(a_i(t) \) is also unbounded, a contradiction.

It follows that \(|I| = 1 \) and thus \(R_i(z_1, \ldots, z_m) = a(z_i + a_i(t)) \) for some \(i \in \{1, \ldots, m\} \) and infinitely many \(t \in \mathbb{N} \). From \(P + tQ = R_i = az_i + aa_i(t) \) we conclude that \(P(z_1, \ldots, z_m) = az_i + c \), where \(a \in \mathbb{N} \), \(c \in \mathbb{Z} \) and \(Q(z_1, \ldots, z_m) = b \neq 0 \). Then

\[
P + tQ = az_i + c + tb = a(z_i + (c + tb)/a)
\]

has the required form only when \(b > 0 \) and \(a \) divides \(c + bt \) for infinitely many \(t \in \mathbb{N} \). From the equality \(at_1 - bt = c \), where \(t_1 \in \mathbb{Z} \), we see that such positive integers \(t \) exist if and only if \(\gcd(a,b) \) divides \(c \). However, if \(\gcd(a,b) > 1 \) and \(\gcd(a,b) \) divides \(c \) then the polynomials \(P = az_i + c \) and \(Q = b \) are divisible by \(\gcd(a,b) > 1 \), and so they are not relatively prime. Consequently, we must have \(\gcd(a,b) = 1 \). Hence \(P(z_1, \ldots, z_m) = az_i + c \) for some \(i \in \{1, \ldots, m\} \) and \(Q(z_1, \ldots, z_m) = b \) with \(a, b \in \mathbb{N} \), \(c \in \mathbb{Z} \) and \(\gcd(a,b) = 1 \), as claimed in the statement of the lemma.

Now we can give the proof of Theorem 1. Assume that the set

\[
\mathcal{D}(x_1) \cup \cdots \cup \mathcal{D}(x_{k-1}) \cup \mathcal{D}_q(x_k)
\]

is linearly dependent over \(Q \). Since the sets \(\mathcal{D}(x_1) \cup \cdots \cup \mathcal{D}(x_{k-1}) \) and \(\mathcal{D}_q(x_k) \) are both linearly independent over \(Q \), writing \(x_k = P(x_1, \ldots, x_{k-1})/Q(x_1, \ldots, x_{k-1}) \) with two relatively prime polynomials \(P, Q \) in \(\mathbb{Z}[z_1, \ldots, z_{k-1}] \) we must have

\[
\prod_{i \in I} \prod_j (z_i + n_j)^{u_{ij}} = \prod_j (P(x_1, \ldots, x_{k-1})/Q(x_1, \ldots, x_{k-1}) + n_j)^{u_{ij}}
\]

for some \(I \subseteq \{1, \ldots, k-1\} \), \(n_{ij}, n_j \in \mathbb{N} \cup \{0\} \), \(n_j \geq q \) and \(u_{ij}, u_j \in \mathbb{Z} \setminus \{0\} \). Of course, \(P \) and \(Q \) are not both constants, because \(x_k \) is transcendental. Also, without restriction of generality, by multiplying both \(P \) and \(Q \) by \(-1\) if necessary, we may assume that the leading coefficient of \(P \) is positive.

Since the numbers \(x_1, \ldots, x_{k-1} \) are algebraically independent, the equality (4) must be the identity, namely,

\[
\prod_{i \in I} \prod_j (z_i + n_j)^{u_{ij}} = \prod_j (P(z_1, \ldots, z_{k-1})/Q(z_1, \ldots, z_{k-1}) + n_j)^{u_{ij}}.
\]

Note that the polynomials \(P + n_jQ \) and \(P + n_lQ \) with \(n_j \neq n_l \) can have only constant common factor, since \(P \) and \(Q \) are relatively prime. Hence selecting any \(n_j \geq q \) on the right hand side of (5) we see that the corresponding polynomial \(P(z_1, \ldots, z_{k-1}) + n_j Q(z_1, \ldots, z_{k-1}) \) must be a constant multiplied by certain product \(\prod_{i \in I} (z_i + n_{i_l})^{v_{i_l}} \), where \(I_1 \subseteq I \), \(n_{i_l} \in \mathbb{N} \cup \{0\} \) and \(v_{i_l} \in \mathbb{N} \). However, by Lemma 3, this is impossible for \(q \) large enough whenever \((P, Q) \neq (az_i + c, b) \).
with a, b, c as in Lemma 3. This completes the proof of Theorem 1, since the condition of the theorem and that of the lemma which exclude the case $P(z_1, \ldots, z_{k-1}) = az_j + c$, $Q(z_1, \ldots, z_{k-1}) = b$, where $i \in \{1, \ldots, k-1\}$, $a, b \in \mathbb{N}$, $c \in \mathbb{Z}$ and $\gcd(a, b) = 1$, are the same.

3. Proof of Theorem 2

Assume that the set of Dirichlet exponents
\[\mathcal{D}_q(x_1) \cup \cdots \cup \mathcal{D}_q(x_k) \]
is linearly independent over \mathbb{Q}. Evidently, its subset
\[\mathcal{D}_q(x_1) \cup \cdots \cup \mathcal{D}_q(x_k) , \]
where $q := \max_{1 \leq j \leq k} q_j$, is linearly independent over \mathbb{Q} too. Take a maximal subset M_1 of the finite set $\bigcup_{j=1}^{k} (\mathcal{D}(x_j) \setminus \mathcal{D}_q(x_j))$ for which the set
\[\mathcal{D}_1 := M_1 \cup \mathcal{D}_q(x_1) \cup \cdots \cup \mathcal{D}_q(x_k) \]
is linearly independent over \mathbb{Q}. This means that each of the $qk - |M_1|$ remaining logarithms $\log(n + x_j) \not\in \mathcal{D}_1$, where $0 \leq n \leq q - 1$ and $1 \leq j \leq k$, is a linear combination with rational coefficients of some elements of \mathcal{D}_1. (Of course, the choice of the set M_1 is not necessarily unique.)

Fix an integer $m \geq q$ such that each of the logarithms $\log(n + x_j) \not\in \mathcal{D}_1$ is expressible in the form
\[\log(n + x_j) = \sum_{i=1}^{k} \sum_{r=0}^{m-1} c_{j,n,r,i} \log(i + x_r) \]
with $c_{j,n,r,i} \in \mathbb{Q}$. (Some of the coefficients $c_{j,n,r,i}$ can be zeros.) Therefore, by increasing q to m if necessary and adding more logarithms to the set M_1 we may assume that each $\log(n + x_j)$ which is not in the set
\[\mathcal{D} := M \cup \mathcal{D}_m(x_1) \cup \cdots \cup \mathcal{D}_m(x_k) , \]
where
\[M := M_1 \cup \{ \log(q + x_1), \ldots, \log(m - 1 + x_1) \} \cup \cdots \]
\[\cup \{ \log(q + x_k), \ldots, \log(m - 1 + x_k) \} , \]
is a linear combination of at most km logarithms of the set M. Obviously, there exists a positive integer ℓ such that for each $\log(n + x_j) \not\in \mathcal{D}$ we have the representation
\[\ell \log(n + x_j) = \sum_{\log(i + x_j) \in M} c_{i,r} \log(i + x_r) \]
with $c_{i,r} \in \mathbb{Z}$.

Let K_j be the sets and let $f_j(s)$ be the functions described in Theorem 2. Fix $\varepsilon > 0$. Let K be a simply connected compact subset of the strip $\{ s \in \mathbb{C} : 1/2 < \Re(s) < 1 \}$ such that the union $\bigcup_{j=1}^{k} K_j$ is included in the interior of K. By Mergelyan’s theorem (see Lemma 5 in [13]), there exist polynomials with complex coefficients $p_j(s)$, $j = 1, \ldots, k$, such that

$$\max_{1 \leq j \leq k} \max_{s \in K_j} |f_j(s) - p_j(s)| < \varepsilon. \quad (7)$$

By Gonek’s lemma (see Lemma 7, (29) and (30) in [13]), there is a large positive integer $v > m$ such that for each sufficiently large integer t and each $j = 1, \ldots, k$ we have

$$\max_{s \in K} \left| p_j(s) - \sum_{0 \leq n < v} \frac{1}{(n + \alpha_j)^{\gamma}} - \sum_{v \leq n \leq t} \frac{\exp(2\pi i\theta_{n,j})}{(n + \alpha_j)^{\gamma}} \right| < \varepsilon$$

with some $\theta_{n,j} \in \mathbb{R}$. Selecting $\theta_{n,j} = 0$ for $n = m, \ldots, v$, we can rewrite the above inequality in the form

$$\max_{s \in K} \left| p_j(s) - \sum_{0 \leq n < m} \frac{1}{(n + \alpha_j)^{\gamma}} - \sum_{m \leq n \leq t} \frac{\exp(2\pi i\theta_{n,j})}{(n + \alpha_j)^{\gamma}} \right| < \varepsilon. \quad (8)$$

For $\delta > 0$ let $B_T(\delta)$ be a set of those $t \in [T, 2T]$ for which

$$\|-(\tau/2\pi) \log(n + \alpha_j) - \theta_{n,j}\| \leq \delta \quad \text{when } m \leq n \leq t, 1 \leq j \leq k$$

and

$$\|-(\tau/2\pi) \log(n + \alpha_j)\| \leq \delta \quad \text{when } \log(n + \alpha_j) \in M.$$

Observe that in view of (6) the second inequality implies that for each sufficiently small δ there is a positive constant c_0 (which depends on ℓ, M and the coefficients $c_{t,r}$ in $qm - |M|$ equalities (6)) such that

$$\|-(\tau/2\pi) \log(n + \alpha_j)\| \leq c_0 \delta \quad \text{for each } n = 0, 1, \ldots, m - 1 \text{ and each } j = 1, \ldots, k. \quad (9)$$

Since the logarithms involved in the definition of $B_T(\delta)$ are linearly independent over \mathbb{Q}, by Kronecker’s theorem (see Lemma 6 in [13]), the Lebesgue measure of the set $B_T(\delta)$ satisfies

$$\mu(B_T(\delta)) \sim \varepsilon_1 T \quad \text{as } T \to \infty, \quad \text{where } \varepsilon_1 := (2\delta)^{k(t-m+1)+|M|}. \quad (10)$$

For each $j = 1, \ldots, k$ and each $t \in B_T(\delta)$ we have

$$\max_{s \in K} \left| \sum_{m \leq n \leq t} \frac{\exp(2\pi i\theta_{n,j})}{(n + \alpha_j)^{\gamma}} - \sum_{m \leq n \leq t} \frac{1}{(n + \alpha_j)^{\gamma+t}} \right| < \varepsilon$$

whenever δ is small enough. Similarly, by (9), we obtain

$$\max_{s \in K} \left| \sum_{0 \leq n < m} \frac{1}{(n + \alpha_j)^{\gamma}} - \sum_{0 \leq n < m} \frac{1}{(n + \alpha_j)^{\gamma+t}} \right| < \varepsilon.$$
when δ is small enough. Combined with (8) this gives

$$\max_{1 \leq j \leq k} \max_{s \in K} \left| p_j(s) - \frac{1}{\sum_{0 \leq n \leq t} (n + \alpha_j)^{\tau+it}} \right| < 3\epsilon. \tag{11}$$

The next two inequalities are standard and can be obtained by considering the second moments of the involved functions. Firstly, for any pair of positive numbers ϵ_1, ϵ_2 and a set

$$A_T(\epsilon, z) := \left\{ \tau \in [T, 2T] : \max_{1 \leq j \leq k} \max_{s \in K} \left| \zeta(s + i\tau, \alpha_j) - \frac{1}{\sum_{0 \leq n \leq z} (n + \alpha_j)^{\tau+it}} \right| < \epsilon \right\} \tag{12}$$

we have

$$\lim_{T \to \infty} \inf \frac{\mu(A_T(\epsilon, z))}{T} > 1 - \epsilon_2 \tag{13}$$

for each sufficiently large z (see Lemma 9 in [13]). Secondly, let $C_T(\delta)$ be a subset of $B_T(\delta)$ for which the inequality

$$\max_{1 \leq j \leq k} \max_{s \in K} \left| \sum_{0 \leq n \leq z} (n + \alpha_j)^{\tau+it} \right| < \epsilon \tag{14}$$

holds uniformly for $z > t$. Then (see Lemma 11 in [13] and (10)) for each sufficiently large t we have

$$\lim_{T \to \infty} \inf \frac{\mu(C_T(\delta))}{T} > \frac{1}{2} \lim_{T \to \infty} \frac{\mu(B_T(\delta))}{T} = \frac{\epsilon_1}{2}.$$

Hence selecting $\epsilon_2 = \epsilon_1/4$ in (13) we obtain

$$\lim_{T \to \infty} \inf \frac{\mu(A_T(\epsilon, z) \cap C_T(\delta))}{T} > \frac{\epsilon_1}{4}$$

for each sufficiently large z. Finally, for $\tau \in A_T(\epsilon, z) \cap C_T(\delta)$ combining (7), (11), (12), (14) we find that

$$\max_{1 \leq j \leq k} \max_{s \in K} |\zeta(s + i\tau, \alpha_j) - f_j(s)| < 7\epsilon.$$

This completes the proof of Theorem 2.

\section*{References}

ON THE LINEAR INDEPENDENCE OF THE SET OF DIRICHLET EXPO

Artūras Dubickas
DEPARTMENT OF MATHEMATICS AND INFORMATICS
VILNIUS UNIVERSITY
NAUGARDUKO 24, VILNIUS LT-03225
LITHUANIA
E-mail: arturas.dubickas@mif.vu.lt