ADDITIVE BASES OF POSITIVE INTEGERS AND RELATED PROBLEMS

ARTŪRAS DUBICKAS

ABSTRACT. Let A be an infinite set of nonnegative integers and let $k \geq 2$ be an integer. We investigate the relation between the number of representations of an integer n by sums of the form $a_1 + \cdots + a_k$, where $a_1, \ldots, a_k \in A$, and the size of A. Some related problems are also considered.

Communicated by Georges Grekos

1. Introduction

Let A be an infinite set of nonnegative integers and let $k \geq 2$ be an integer. We will denote by $R_k(A, n)$ the number of representations of n in the form $n = a_1 + a_2 + \cdots + a_k$, where $a_1, a_2, \ldots, a_k \in A$. Similarly, let $r_k(A, n)$ denote the number of such representations of n by ordered k-tuples, namely, $n = a_1 + a_2 + \cdots + a_k$ with $a_1 \leq a_2 \leq \ldots \leq a_k$. Setting

$$f(z) = \sum_{j \in A} z^j,$$

we have

$$f(z)^k = \sum_{n=0}^{\infty} R_k(A, n) z^n. \quad (1)$$

Evidently,

$$r_k(A, n) \leq R_k(A, n) \leq k! r_k(A, n). \quad (2)$$

A set A is called a base of \mathbb{N} of order k if $r_k(A, n) \geq 1$ for each $n \in \mathbb{N}$. By (3), the condition $r_k(A, n) \geq 1$ is equivalent to $R_k(A, n) \geq 1$. An old conjecture of Erdős and Turán [4] asserts that if $R_2(A, n) \geq 1$ for each sufficiently large n then $\limsup_{n \to \infty} R_2(A, n) = \infty$. In other words, it says that for no positive integer v we have $R_2(A, n) \in [1, v]$ for all sufficiently large n.

2000 Mathematics Subject Classification: 11B13, 11R09.
Keywords: Additive basis, sumset, square of a polynomial.
Although this Erdős-Turán conjecture (also known as one of USD 500 problems in [3]) remains open, there are several nontrivial results concerning it. Firstly, Grekos, Haddad, Helou and Pihko [5] proved that the numbers $R_2(A, n)$, $n \geq 0$, cannot all lie in the interval $[1, 5]$. This was later extended to the interval $[1, 7]$ by Borwein, Choi and Chu [1]. Recently, Sándor [10] showed that if $v = \limsup_{n \to \infty} R_2(A, n)$ then $\liminf_{n \to \infty} R_2(A, n) \leq (\sqrt{v - 1})^2$.

It seems likely that for every integer $k \geq 2$ we must have either $\limsup_{n \to \infty} R_k(A, n) = \infty$ or $\liminf_{n \to \infty} R_k(A, n) = 0$.

Of course, such a result, if proved, would imply the Erdős-Turán conjecture (which is the corresponding statement for $k = 2$). In other words, we ask whether there is an interval $[1, v]$ and an integer n_0 such that $R_k(A, n) \in [1, v]$ for each $n \geq n_0$. In view of (3) this problem is equivalent to the question on whether there are some integers $n_0, b > 0$ such that $r_k(A, n) \in [1, b]$ for every $n \geq n_0$.

The following result describes the size of the set A provided that $r_k(A, n)$ is bounded from below or from above. Here and subsequently, $A(n)$ stands for the number of elements of the set $A \cap [0, n]$.

Theorem 1. Let $k \geq 2$ be an integer. If $r_k(A, n) \geq a$ for each $n \geq n_0$ then $A(n) \geq (ak!n)^{1/k} - k + 1$ for every sufficiently large n. If $r_k(A, n) \leq b$ for each $n \geq n_1$ then $A(n) \leq (bk^2(k - 1)!n)^{1/k} + 1$ for every sufficiently large n. Finally, if $r_k(A, n) \leq 1$ for each $n \geq 1$ then

$$A(n) \leq \begin{cases} (((k/2)((k/2)!))^2n)^{1/k} + O(n^{1/(2k)}) & \text{for } k \text{ even}, \\ (((k + 1)/2)!)^2n)^{1/k} + O(n^{1/(2k)}) & \text{for } k \text{ odd}. \end{cases}$$

In particular, Theorem 1 combined with (3) implies that

$$a^{1/k} \leq \liminf_{n \to \infty} A(n)n^{-1/k} \leq \limsup_{n \to \infty} A(n)n^{-1/k} \leq (bk^2(k - 1)!)^{1/k}$$

provided that $R_k(A, n) \in [a, b]$ for each sufficiently large n.

In this context, Sándor’s result [10] can be easily (and by the same method as in [10]) generalized as follows:

Theorem 2. Let $k \geq 2$ be an integer. If $\limsup_{n \to \infty} R_k(A, n) < \infty$ then

$$\limsup_{n \to \infty} R_k(A, n)^{1/2} - \liminf_{n \to \infty} R_k(A, n)^{1/2} \geq 1.$$

By (1) and (2), Theorem 2 deals with coefficients $b_{n,k}$ of the series

$$\sum_{n=0}^{\infty} b_{n,k}^n z^n = \sum_{n=0}^{\infty} b_{n,k}^n z^n.$$
where \(b_n \in \{0, 1\}\). In Section 4, we will give an example of such series with \(b_n > 0\) for each \(n \geq 0\) such that \(\lim_{n \to \infty} b_{n,k} = \gamma > 0\), so no analogue of Theorem 2 holds if the condition \(b_n \in \{0, 1\}\) is replaced by \(b_n > 0\). We also ask for the smallest value of the quotient of the largest and the smallest coefficients that appear in the \(k\)th power of a polynomial \((\sum_{n=0}^{d} b_n z^n)^k = \sum_{n=0}^{d} b_{n,k} z^n\), where \(b_0, \ldots, b_d \geq 0\) and \(b_0, b_d > 0\). It seems that such a question has not been considered earlier, although it seems quite natural. Moreover, its version with Newman polynomials (those with coefficients in \(\{0, 1\}\)) seems to be naturally related to the Erdős-Turán conjecture.

2. Proof of Theorem 1

Put \(m = A(n)\). The number of ordered \(k\)-tuples \((a_1, \ldots, a_k) \in A^k\), where \(0 \leq a_1 \leq \ldots \leq a_k \leq n\), is equal to \(m(m+1) \ldots (m+k-1)/k!\). Since \(r_k(A, N) \geq a\) for \(N \geq m_0\) and \(a_{m+1} > n\), every integer \(N \in [n_0, n]\) is expressible by the sum of at least \(a\) ordered \(k\)-tuples as above. Hence

\[
m(m+1) \ldots (m+k-1)/k! \geq a(n-n_0+1).
\]

Note that \(m(m+1) \ldots (m+k-1) < (m+k-3/2)^k\). Consequently, \((m+k-3/2)^k > ak!(n-n_0+1)\) giving \(m+k-3/2 > (ak!(n-n_0+1))^{1/k}\). This yields the required inequality \(m > (ak!n)^{1/k} - k + 1\) for \(n\) large enough.

We remark that the above proof follows that of Nathanson [9] for \(k = 2\) and \(a = 1\). It seems, however, that his proof of Theorem 4 gives the inequality \(A(0, x) \geq \sqrt{2x} - 1\) only instead of \(A(0, x) \geq 2\sqrt{x} - 1\) as claimed in [9]. (In the notation of [9], \(A(0, x)\) is the number of elements of the set \(A\) in \([0, x]\). One can only claim that \((k^2 + k)/2 \geq x - n_0\), because \(n > x\) can be represented as \(a + a'\) with \(a' > x\).) A corrected inequality \(A(0, x) \geq \sqrt{2x} - 1\) of [9] is exactly the first part of our Theorem 1 with \(k = 2\) and \(a = 1\). Of course, this implies that \(\liminf_{n \to \infty} A(n)/\sqrt{n} \geq \sqrt{2}\) for each set \(A\) which is an asymptotic basis of \(N\) of order 2. We stress that a slightly better constant for liminf replaced by limsup, namely, \(\limsup_{n \to \infty} A(n)/\sqrt{n} \geq 2\sqrt{2}/\pi\) for each \(A\) which is an asymptotic basis of \(N\) of order 2 follows from Theorem 3.3 in [6].

For the second part, suppose that \(m = A(n)\) and \(r_k(A, N) \leq b\) for \(N \geq n_1\). Put \(B = \max_{0 \leq n \leq n_1 - 1} r_k(A, n)\). As above, the number of ordered \(k\)-tuples \((a_1, \ldots, a_k) \in A^k\), where \(0 \leq a_1 \leq \ldots \leq a_k \leq n\), is equal to \(m(m+1) \ldots (m+k-1)/k!\) and \(a_{m+1} > n\). Note that the sum \(a_1 + \cdots + a_k\) lies in the interval \([0, kn]\). Hence

\[
m^k/k! < m(m+1) \ldots (m+k-1)/k! \leq Bn_1 + b(kn - n_1 + 1).
\]

83
This yields \(m = A(n) < (bk^2(k - 1)!n)^{1/k} + 1 \) for \(n \) sufficiently large.

Recall that a set of integers \(E \) is called a \(B_k[1] \) set if all possible sums of \(k \) (not necessarily distinct) elements of \(E \) are distinct. Since \(r_k(A,j) \leq 1 \) for all \(j \geq 0 \), the set \(A \cap [0, n] \) is a \(B_k[1] \) set. However, the largest such set which is a subset of \(\{0, 1, \ldots, n\} \) contains at most \(((k/2)(k/2))^{n/2} + O(n^{1/(2k)}) \) elements for \(k \) even (see [7], [8]) and at most \((((k + 1)/2)!n)^{1/k} + O(n^{1/(2k)}) \) elements for \(k \) odd (see [2]). This gives the required bound for \(A(n) \).

3. Proof of Theorem 2

The result is obvious if \(\lim \inf_{n \to \infty} R_k(A,n)^{1/2} = 0 \), because \(A \) is infinite and so \(R_k(A,n) \geq 1 \) for infinitely many \(n \)’s.

Assume that \(\lim \inf_{n \to \infty} R_k(A,n)^{1/2} > 0 \), but the required inequality does not hold. Then there exist a positive integer \(n_0 \) and two positive numbers \(u, v \) such that \(0 < u < v < \infty, v > 1, v - u < 1 \) and \(u \leq R_k(A,n)^{1/2} < v \) for every \(n \geq n_0 \).

The inequality \(v - u < 1 \) implies that \(v^2 < v^2 + u \). Take \(w = (v^2 - v + u^2 + u)/2 \). Then \(0 < w - u^2 < u \) and \(0 < u^2 - w < v \), hence \((u^2 - w)^2 < u^2 \) and \((v^2 - w)^2 < v^2 \). It follows that there is a positive number \(\epsilon_0 \) such that for each \(y \in [v^2, v^2] \) we have \((y - w)^2 < (1 - \epsilon_0)y \). Hence, as \(u^2 \leq R_k(A,n) \leq v^2 \) for \(n \geq n_0 \), we obtain

\[
(R_k(A,n) - w)^2 < (1 - \epsilon_0)R_k(A,n).
\]

Let \(r \) be a fixed number satisfying \(1/2 < r < 1 \). Consider the integral

\[
I = \int_0^1 |f(re^{2\pi it}) - w|^{2r}e^{2\pi i t n}dt = \int_0^1 |f(re^{2\pi it}) - \frac{w}{1-re^{2\pi i t}}|dt.
\]

Subtracting \(w/(1 - z) \) from both sides of (2) and substituting \(z = re^{2\pi it} \) with \(t \in [0, 1] \), we obtain

\[
f(re^{2\pi it}) - w/(1-re^{2\pi it}) = \sum_{n=0}^{\infty} (R_k(A,n) - w)r^n e^{2\pi i t n}.
\]

Hence \(I = \int_0^1 \sum_{n=0}^{\infty} b_n r^n e^{2\pi i t n} |dt| \). Applying the inequality of Cauchy-Schwarz \(\int_0^1 |g(t)|^2 dt \leq \left(\int_0^1 |g(t)|^2 dt \right)^{1/2} \) and the Parseval identity

\[
\int_0^1 \sum_{n=0}^{\infty} b_n e^{2\pi i t n} |dt| = \sum_{n=0}^{\infty} |b_n|^2,
\]

84
we find that $I^2 \leq \sum_{n=0}^{\infty} (R_k(A,n) - w)^2 r^{2n}$. Estimating the sum of all terms in the range $0 \leq n \leq n_0 - 1$ by the absolute constant

$$c_1 = n_0 \max_{0 \leq n \leq n_0 - 1} (R_k(A,n) - w)^2$$

and each of the terms $n \geq n_0$ by (5), we obtain the inequality

$$I^2 \leq c_1 + (1 - \varepsilon_0) \sum_{n=n_0}^{\infty} R_k(A,n) r^{2n}.$$

Using (2) with $z = r^2$ we further have $I^2 \leq c_1 + (1 - \varepsilon_0) f(r^2)^k$. This yields

$$I \leq c_2 + (1 - \varepsilon_0/2) f(r^2)^{k/2}.$$

(Here and below, c_1, c_2, \ldots are some positive constants that do not depend on r.)

Next, we shall estimate I from below using

$$I \geq \int_0^1 |f(re^{2\pi it})|^k dt - w \int_0^1 \frac{dt}{|1-re^{2\pi it}|}.$$

Firstly, by (1) and (6), we have

$$\int_0^1 |f(re^{2\pi it})|^2 dt = \int_0^1 \left| \sum_{j \in A} r^j e^{2\pi i tj} \right|^2 dt = \sum_{j \in A} r^{2j} = f(r^2).$$

Combining this with the inequality $\int_0^1 |g(t)|^2 dt \leq \left(\int_0^1 |g(t)|^k dt \right)^{2/k}$, where $k \geq 2$ (which follows from Hölder’s inequality), we have

$$\int_0^1 |f(re^{2\pi it})|^k dt \geq \left(\int_0^1 |f(re^{2\pi it})|^2 dt \right)^{k/2} = f(r^2)^{k/2}.$$

Note that $|1-re^{2\pi it}| = ((1-r)^2 + 4r \sin^2(\pi t))^{1/2}$. So $|1-re^{2\pi it}| \geq 1 - r$ in the interval $0 \leq t \leq 1 - r$ and $|1-re^{2\pi it}| \geq 2\sqrt{r}\sin(\pi t) \geq 4\sqrt{r}t > 2t$ in the interval $1 - r \leq t \leq 1/2$, because $\sin x \geq 2x/\pi$ for each $x \in [0,\pi/2]$. It follows that

$$\int_0^1 \frac{dt}{|1-re^{2\pi it}|} = 2 \int_0^{1/2} \frac{dt}{|1-re^{2\pi it}|} \leq 2 \int_0^{1-r} \frac{dt}{1-r} + 2 \int_{1-r}^{1/2} \frac{dt}{2t}$$

$$= 2 + \log \frac{1}{2-2r} < 2 + \log \frac{1}{1-r}.$$

Consequently,

$$I \geq f(r^2)^{k/2} - w \left(2 + \log \frac{1}{1-r} \right).$$
Combining this inequality with (7), we obtain
\[f(r^2)^{k/2} - w \left(2 + \log \frac{1}{1 - r} \right) \leq c_2 + (1 - \varepsilon_0/2)f(r^2)^{k/2}. \]
So
\[\varepsilon_0 f(r^2)^{k/2} \leq c_3 + 2w \log \frac{1}{1 - r}. \]
Select \(r = 1 - 1/T \) with a large integer \(T \) to be chosen later. Then
\[\varepsilon_0 f(1 - 2/T)^{k/2} \leq \varepsilon_0 f(r^2)^{k/2} \leq c_3 + 2w \log \frac{1}{1 - r} \leq c_4 \log T. \]
From \(R_k(A, n) \geq u^2 \) for \(n \geq n_0 \) using (4) we deduce that \(A(n) > c_5 n^{1/k} \). Thus \(A(T) > c_5 T^{1/k} \) for each sufficiently large integer \(T \). Hence, by (1),
\[f(1 - 2/T) = \sum_{j \in A} (1 - 2/T)^j > \sum_{j \in A, j \leq T} (1 - 2/T)^j \]
\[\geq A(T)(1 - 2/T)^T > c_6 T^{1/k}. \]
It follows that
\[c_4 \log T \geq \varepsilon_0 f(1 - 2/T)^{k/2} > \varepsilon_0(c_6 T^{1/k})^{k/2} > \varepsilon_0 c_7 T^{1/2}, \]
which is a contradiction for \(T \) large enough.

4. Some related problems

Let us consider the series
\[f(z) = \sum_{n=0}^{\infty} \frac{z^n}{(n+1)^{1-1/k}}. \]
Then
\[f(z)^k = \sum_{n=0}^{\infty} b_{n,k} z^n, \]
where
\[b_{n,k} = \sum_{j_1, \ldots, j_k \geq 0, j_1 + \cdots + j_k = n} ((j_1 + 1)(j_2 + 1) \cdots (j_k + 1))^{-1+1/k}. \]
Write \(b_{n,k} \) in the form
\[b_{n,k} = \frac{1}{n^{k-1}} \sum_{j_1, \ldots, j_k \geq 1} \left(\frac{j_1 + 1}{n} \cdots \frac{j_{k-1} + 1}{n} (1 + \frac{k}{n} - \sum_{l=1}^{k-1} \frac{j_l + 1}{n}) \right)^{-1+1/k}, \]
ADDITIVE BASES OF POSITIVE INTEGERS AND RELATED PROBLEMS

where the sum is taken over the indices satisfying the inequalities $j_1, \ldots, j_{k-1} \geq 0$, $j_1 + \cdots + j_{k-1} \leq n$. Put

$$B_{n,k} = \frac{1}{nk-1} \sum_{i_1, \ldots, i_{k-1} \geq 1, i_1 + \cdots + i_{k-1} \leq n-1} \left(\frac{i_1}{n} \cdots \frac{i_{k-1}}{n} \left(1 - \kappa \sum_{l=1}^{k-1} \frac{i_l}{n} \right) \right)^{-1+1/k}.$$

For each $k \geq 2$, let T_k be a subset of \mathbb{R}^{k-1} consisting of the points $(\theta_1, \ldots, \theta_{k-1}) \in \mathbb{R}^{k-1}$ satisfying $\theta_1, \ldots, \theta_{k-1} \geq 0$ and $\theta_1 + \cdots + \theta_{k-1} \leq 1$. Then the sum $B_{n,k}$ is a Riemann sum of the integral

$$I_k = \int_{T_k} (x_1 \cdots x_{k-1}(1-x_1 - \cdots - x_{k-1}))^{-1+1/k} dx_1 \cdots dx_{k-1}.$$

Since k is fixed and $n \to \infty$, it is easily seen that

$$\lim_{n \to \infty} b_{n,k} = \lim_{n \to \infty} B_{n,k} = I_k.$$

Hence no analogue of Theorem 2 holds for the series with nonnegative coefficients. In particular, for $k = 2$, the integral is expressible by Euler’s beta function. Indeed,

$$I_2 = \int_{T_2} (x_1(1-x_1))^{-1/2} dx_1 = \int_0^1 \frac{dx_1}{\sqrt{x_1(1-x_1)}} = \frac{\Gamma(1/2)^2}{\Gamma(1)} = \pi,$$

so the coefficients $b_{n,2}$ of the series $\sum_{n=0}^{\infty} b_{n,2} z^n = \left(\sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n+1}} \right)^2$ tend to π as $n \to \infty$.

Suppose that P is a polynomial in one variable with positive coefficients and let $q(P)$ be the quotient of the largest and the smallest coefficients of P. Let \mathcal{P}_d denote the set of polynomials of degree d with nonnegative coefficients, i.e.,

$$\mathcal{P}_d = \{ \sum_{n=0}^{d} b_n z^n : b_0, \ldots, b_d \geq 0, b_0, b_d > 0 \}.$$

Consider the quantity

$$m_k(d) = \inf_{P \in \mathcal{P}_d} q(P^k) = \min_{P \in \mathcal{P}_d} q(P^k).$$

Note that without loss of generality it is sufficient to consider only those polynomials of \mathcal{P}_d which satisfy $b_0 = 1$ and $b_d \geq 1$. Indeed, we can multiply P by a constant. In addition, instead of P we can consider the reciprocal polynomial of P, defined by

$$P^*(z) = z^d P(1/z) = b_d + b_{d-1} z + \cdots + b_0 z^d,$$

for which $q(P^*) = q(P^k)$. Also, by compactness, the infimum of $q(P^k)$ is attained.
For example, the quantity $m_2(d)$ evaluates how ‘flat’ can the square of a polynomial with nonnegative coefficients be in terms of its coefficients. It is easy to see that $m_2(1) = 2$ (the minimum is attained at $P(z) = 1 + z$) and $m_2(2) = 2.25$ (the minimum is attained at $P(z) = 1 + z/2 + z^2$). More generally, let us take

$$P(z) = 1 + \frac{1}{2}(z + z^2 + \cdots + z^{d-1}) + z^d \in \mathcal{P}_d.$$

Then each coefficient of P^2 is greater than or equal to 1 and two extreme coefficients of P^2 are equal to 1. The largest coefficient of P^2 is that of z^d. It is equal to $(d + 7)/4$. Consequently,

$$m_2(d) \leq q(P^2) = (d + 7)/4 \text{ for each } d \geq 1.$$

This inequality is not optimal for $d \geq 3$. Consider, for instance, the sequence whose first two terms are $y_0 = 1, y_1 = 1/2$ and whose mth element $y_m, m \geq 2$, is defined by the following recurrent formulas depending on the parity of m:

$$2y_{2k+1}y_0 + 2y_{2k-1}y_1 + \cdots + 2y_{k+1}y_{k-1} + y_k^2 = 1,$$

$$2y_{2k}y_0 + 2y_{2k-1}y_1 + \cdots + 2y_{k+2}y_{k-1} + 2y_{k+1}y_k = 1.$$

Then

$$y_0 = 1, y_1 = \frac{1}{2}, y_2 = \frac{3}{8}, y_3 = \frac{5}{16}, y_4 = \frac{35}{128}, y_5 = \frac{63}{256}, y_6 = \frac{231}{1024}, \ldots.$$

Consider the following reciprocal polynomial

$$P_d(z) = 1 + y_1 z + y_2 z^2 + y_3 z^3 + \cdots + y_k z^{d-k} + y_{k+1} z^{d-k+1} + z^d.$$

Then

$$P_3(z)^2 = (1 + \frac{1}{2}(x + x^2 + x^3))^2 = 1 + x + \frac{5}{4} x^2 + \frac{5}{2} x^3 + \frac{5}{4} x^4 + x^5 + x^6,$$

so $q(P_3^2) = 5/2$ and $m_3(3) \leq 5/2$. Similarly,

$$P_4(z)^2 = 1 + x + x^2 + \frac{11}{8} x^3 + \frac{169}{64} x^4 + \frac{11}{8} x^5 + x^6 + x^7 + x^8,$$

88
which implies that \(q(P_2^4) = \frac{169}{64} \) and \(m_2(4) \leq \frac{169}{64} = 2.640625 \). In the same manner, we obtain

\[
\begin{align*}
m_2(5) &\leq q(P_2^5) = \frac{89}{32} = 2.78125, \\
m_2(6) &\leq q(P_2^6) = \frac{737}{256} = 2.87890625, \\
m_2(7) &\leq q(P_2^7) = \frac{381}{128} = 2.9765625, \\
m_2(8) &\leq q(P_2^8) = \frac{49993}{16384} = 3.05133056\ldots, \\
m_2(9) &\leq q(P_2^9) = \frac{25609}{8192} = 3.12609863\ldots, \\
m_2(10) &\leq q(P_2^{10}) = \frac{208841}{65536} = 3.18666076\ldots, \\
m_2(11) &\leq q(P_2^{11}) = \frac{106405}{32768} = 3.24722290\ldots, \\
m_2(12) &\leq q(P_2^{12}) = \frac{3458321}{1048576} = 3.29811191\ldots.
\end{align*}
\]

Is it true that \(m_2(d) = q(P_d^2) \) for each \(d \)? Is \(m_2(d) \) bounded or unbounded in terms of \(d \)?

A polynomial analogue of the problem raised in Section 1 can be stated as follows. Is it true that, for every \(k \geq 2 \), there is an absolute constant \(b = b(k) \geq 1 \) such that, for each \(d \in \mathbb{N} \), the \(k \)th power of some Newman polynomial of degree \(d \) has all of its coefficients in \([1, b]\)?

Of course, if the quantity \(m_2(d) \) and, more generally, \(m_k(d) \) is unbounded, then the answer to this question is negative. Indeed, the set of all Newman polynomials of degree \(d \) is just a small subset of \(P_d \). For \(k = 2 \), this conjecture about squares of Newman polynomials may be viewed as a polynomial analogue of the Erdős-Turán conjecture.

Acknowledgment. I thank a referee who carefully read the paper and suggested several necessary corrections. This research was partially supported by the Lithuanian State Science and Studies Foundation.

References

Received October 10, 2008
Accepted February 7, 2009

Artūras Dubickas
Department of Mathematics and Informatics
Vilnius University, Naugarduko 24
Vilnius LT-03225
LITHUANIA
E-mail: arturas.dubickas@mif.vu.lt