k-connectivity of uniform s-intersection graphs

Mindaugas Bloznelis*, Katarzyna Rybarczyk*

*Faculty of Mathematics and Informatics, Vilnius University, 03225 Vilnius, Lithuania, E-MAIL: mindaugas.bloznelis@mif.vu.lt

*Faculty of Mathematics and Computer science, Adam Mickiewicz University, 60769 Poznań, Poland, E-MAIL: kryba@amu.edu.pl

Abstract

Let \(W_1, \ldots, W_n \) be independent random subsets of \([m] = \{1, \ldots, m\}\). Assuming that each \(W_i \) is uniformly distributed in the class of \(d \)-subsets of \([m]\) we study the uniform random intersection graph \(G_s(n, m, d) \) on the vertex set \(\{W_1, \ldots, W_n\} \), defined by the adjacency relation: \(W_i \sim W_j \) whenever \(|W_i \cap W_j| \geq s \). We show that as \(n, m \to \infty \) the edge density threshold for the property that each vertex of \(G_s(n, m, d) \) has at least \(k \) neighbours is asymptotically the same as that for \(G_s(n, m, d) \) being \(k \)-connected.

1 Introduction

Let \(H = H(n, m, d) \) be a random bipartite graph with bipartition \((V, W)\), where \(|V| = n, |W| = m\), and where each vertex from \(V \) chooses \(d \) neighbours in \(W \) uniformly at random and independently of the other vertices of \(V \). Given a natural number \(s, 1 \leq s < d \), the uniform random intersection graph \(G_s = G_s(n, m, d) \) is defined as the graph on the vertex set \(V \), where \(u, v \in V \) are adjacent (denoted by \(u \sim v \)) if they share at least \(s \) common neighbours in \(H \). We refer to the vertices of \(V \) as sensors, and the vertices of \(W \) we call keys. This random graph model has been widely studied in the literature mainly as a model of secure wireless sensor network that uses random predistribution of keys (see [1], [7], [10], [11], [12], [17]). Our study is motivated by fact that \(k \) connectivity of \(G_s \) is an important characteristics of the reliability of the sensor network as well as its resilience against attacks by an adversary controlling a certain number of sensors (see [6]).

Key words and phrases: random intersection graph, k-connectivity, wireless sensor network.
Mathematics Subject Classification 2010: primary 05C80, 05C40, secondary 05C07.
We study the threshold for the property \(\mathcal{C}_k \) that \(G_s \) is \(k \)-connected, i.e., that \(G_s \) is connected and that the removal of any set of at most \(k - 1 \) vertices does not disconnect the graph. Here \(k = 1, 2, \ldots \) is arbitrary, but fixed. For this purpose we consider a sequence of random graphs \(\{ G_s(n,m,d), n = 1, 2, \ldots \} \), where \(m = m(n) \rightarrow \infty \) as \(n \rightarrow \infty \), and the numbers \(s = s(n) \) and \(d = d(n) \) may depend on \(n \). In particular, they may tend to infinity as \(n \rightarrow \infty \), but at a slow rate, see (1) below. We assume that \(s(n) < d(n) \). By \(\delta(G) \) we denote the minimum degree of a graph \(G \). We denote by \(p = p(n,m,d,s) \) the edge-probability in \(G_s(n,m,d,s) \). We always assume that expressions \(o(\cdot), O(\cdot) \) refer to the case where \(n \rightarrow \infty \), and all inequalities are assumed to hold for \(n \) which is large enough.

A necessary condition for a graph to be \(k \)-connected is that it has no vertex of degree less than \(k \). Our first result shows that the thresholds for the properties \(\mathcal{C}_k \) and \(\delta(G_s(n,m,d)) \geq k \) coincide.

Theorem 1. Let \(k \geq 1 \) be an integer. Let \(\gamma \in (0,1) \). Let \(m, n \rightarrow +\infty \). Assume that

\[
((s+2)(d^s)^5(\ln n)^2)^{(3d-s)/(3(d-s))} \leq (\ln n)^{1-\gamma}
\]

and for some \(\theta > 1 \) we have

\[
\ln n - \ln^{1/2} n \leq np \leq \theta \ln n.
\]

Then

\[
\left| \mathbf{P}(G_s(n,m,d) \in \mathcal{C}_k) - \mathbf{P}(\delta(G_s(n,m,d)) \geq k) \right| \leq n^{-\gamma + o(1)} \frac{d^s}{s(s+2)} \left(\frac{d}{s} \right)^{-4}.
\]

Our next theorem gives the threshold for the property \(\delta(G_s(n,m,d)) \geq k \).

Theorem 2. Let \(k \geq 1 \) be an integer. Let \(m, n \rightarrow +\infty \). Assume that

\[
d^2 = o(m \ln^{-1} n),
\]

\[
(s^{-1} - d^{-1}) \ln n - (s^{-1} + (k-1)d^{-1}) \ln \ln n \rightarrow +\infty.
\]

Then for

\[
np = \ln n + (k-1) \ln \ln n + x_n \quad \text{with} \quad x_n = o(\ln n)
\]

we have

\[
\lim_{n \rightarrow \infty} \mathbf{P}(\delta(G_s(n,m,d)) \geq k) = \begin{cases}
0 & \text{if } x_n \rightarrow -\infty, \\
 e^{-\frac{x_n}{(k-1)}} & \text{if } x_n \rightarrow x, \\
1 & \text{if } x_n \rightarrow +\infty.
\end{cases}
\]

Combining (3) and (7) we obtain the threshold for the property \(\mathcal{C}_k \).

Theorem 3. Let \(k \geq 1 \) be an integer. Let \(m, n \rightarrow +\infty \). Suppose that for some \(\gamma \in (0,1) \) condition (1) is satisfied. Assume that (4), (5) hold. Then for \(p \) satisfying (6) we have

\[
\lim_{n \rightarrow \infty} \mathbf{P}(G_s(n,m,d) \in \mathcal{C}_k) = \begin{cases}
0 & \text{if } x_n \rightarrow -\infty, \\
 e^{-\frac{x_n}{(k-1)}} & \text{if } x_n \rightarrow x, \\
1 & \text{if } x_n \rightarrow +\infty.
\end{cases}
\]

We remark that in the statements of Theorems 2 and 3 the edge-probability \(p \) can be replaced by the expression only involving \(d, s \) and \(m \)

\[
\hat{p} = \frac{(d^s)^2}{s!(m)_s},
\]
where \((a)_b = a(a-1)\cdots(a-b+1)\) for any positive integer \(b\). Indeed, as we shall see in Lemma 1 below, condition (4) implies that \(p = \hat{p}(1-o(ln^{-1} n))\). Therefore, for \(n\hat{p} = ln n + (k-1)ln ln n + x_n\), with \(x_n = O(ln n)\), we have \(np = n\hat{p} + o(1)\). In particular, Theorems 2 and 3 remain true with \(p\) replaced by \(\hat{p}\).

In the following corollary of Theorem 2 conditions (4) and (5) are replaced by a simpler, but more stringent condition \(d = o(ln^{1/2} n)\).

Corollary 1. Let \(k \geq 1\) be an integer. Let \(m, n \to +\infty\). Assume that \(d = o(ln^{1/2} n)\). Suppose that \(n\hat{p} = ln n + (k-1)ln ln n + x_n\), with \(x_n = o(ln n)\). Then (7) holds.

In the particular case where \(s \equiv 1\) is constant we have the following result.

Corollary 2. Let \(k \geq 1\) be an integer. Let \(0 < \alpha < 0.2\). Let \(m, n \to +\infty\). Assume that \(s \equiv 1\) and \(d = O(ln^n n)\). Suppose that \(n\hat{p} = ln n + (k-1)ln ln n + x_n\). Then (8) holds.

We note that the condition \(x_n = o(ln n)\) does not appear in Corollary 2.

Theorem 3 and Corollary 2 say that the edge density threshold for the property that \(G_s(n,m,d)\) is \(k\)-connected is the same as that of the binomial random graph \(G(n,p)\), where edges are inserted independently, see [5], [9], [13].

Our results are obtained under the assumption that \(s < d\). In the case where \(s = d\) the random graph \(G_s(n,m,d)\) is a union of disjoint cliques. It is connected (also \(k\)-connected) whenever all sensors have chosen the same collection of keys. This happens with probability \(\binom{m}{d}^{(n-1)}\), which does not depend on \(k\).

Related work. For \(k = 1\) the edge density threshold for the property \(\delta(G_s(n,m,d)) \geq 1\) has been shown in [12]. For \(s \equiv 1\) the connectivity and \(k\)-connectivity of \(G_1(n,m,d)\) has been studied in [1], [7], [17], [20], [21]. For \(s > 1\) the connectivity threshold of \(G_s(n,m,d)\) has been shown in [3].

Our proof of Theorem 1 differs from those of [1], [7], [17], [20], [21]. It relies on an expansion property of \(G_s(n,m,d)\) established in [3].

2 Proofs

Before the proof we introduce some notation and formulate an auxiliary lemma. For a set \(\Omega\) and a natural number \(t\), we denote by \(\binom{\Omega}{t}\) the collection of \(t\)-element subsets of \(\Omega\). The set of keys adjacent to a sensor \(v \in V\) in \(H\) is denoted \(W_v\). We say that a sensor \(v\) covers a set of keys \(B\) if \(B \subset W_v\). Subsets of \(W\) of size \(s\) are called joints.

Lemma 1. *(see, e.g., Lemma 6 of [4])* Given integers \(1 \leq s \leq d \leq m\), let \(W_1, W_2\) be independent random subsets of the set \(W = \{1, \ldots, m\}\) such that \(W_1\) and \(W_2\) are uniformly distributed in the class of subsets of \(W\) of size \(d\). Then

\[
\left(1 - \frac{(d-s)^2}{m+1-d}\right) \hat{p} \leq P(|W_1 \cap W_2| = s) \leq P(|W_1 \cap W_2| \geq s) \leq \hat{p}.
\]

Proof of Theorem 3. The result follows by Theorem 1 and Theorem 2. The fact that (1) indeed implies that the quantity in the right-hand side of (3) tends to 0 is shown in [3] (see the proof of Theorem 1 in [3]).

Proof of Corollary 1. We shall show that conditions (4), (5), (6) of Theorem 2 are satisfied. The bound \(n\hat{p} = O(ln n)\) implies that \(\hat{p}^{-1} \geq cn ln^{-1} n\), for some constant \(c > 0\). Furthermore, the inequality \((d)_s > s!\) implies \((m)_s > \hat{p}^{-1}\). Hence, we have \(m^s \geq cn ln^{-1} n\). The later inequality implies (4), since \(m \geq e^{s^{-1}(1+o(1))} ln n \geq e^{ln^{1/2} n} > d^2 ln^2 n\), for \(s < d = o(ln^{1/2} n)\).
Let us show (5). For $s \leq 2^{-1}d$ we have $s^{-1} - d^{-1} \geq 2^{-1}s^{-1}$. The quantity on the left side of (5) is bounded from below by
\[2^{-1}s^{-1}\ln n - (k+1)s^{-1}\ln \ln n. \]
Hence, it tends to $+\infty$, since $s < d = o(\ln^{1/2} n)$. For $s > 2^{-1}d$ we write $s^{-1} - d^{-1} \geq (d-1)^{-1} - d^{-1} > d^{-2}$. Now the quantity on the left side of (5) is bounded from below by
\[d^{-2}\ln n - (k+1)d^{-1}\ln \ln n. \]
It tends to $+\infty$, since $d = o(\ln^{1/2} n)$.

Finally, (4) and Lemma 1 imply $p = \hat{p}(1 - \mathcal{O}(d^2/m)) = \hat{p} - o(n^{-1})$. Hence, the relation $n\hat{p} = \ln n + (k-1)\ln \ln n + x_n$, with $x_n = o(\ln n)$, implies (6). \hfill \Box

Proof of Corollary 2. First we consider the case where $x_n = o(\ln n)$. In this case we have $n\hat{p} = \mathcal{O}(\ln n)$ and we derive (4), (5), (6) from the bound $d = o(\ln^\alpha n)$ as in the proof of Corollary 1 above. The bound $d = o(\ln^\alpha n)$ also implies (1). Hence, conditions of Theorem 3 are satisfied and we obtain (8). Using a coupling argument we extend the result to the case where the condition $x_n = o(\ln n)$ is violated. We note that except for some particular cases, we do not know how to construct a proper coupling of random intersection graphs. One exception is the case $s = 1$, where such a coupling is available. In [1] (see also the proof of Corollary 1 in [3]) it is shown that if $m'' = hm'$ for some integer h then there is a common probability space on which $G_1(n,m',d) \subseteq G_1(n,m'',d)$ with probability 1. In particular, we have $P(G_1(n,m',d) \in \mathcal{C}_k) \leq P(G_1(n,m'',d) \in \mathcal{C}_k)$. If, in addition, m' and m'' are such that the first probability tends to 1 (the second probability tends to 0), then the second probability tends to 1 (the first probability tends to 0) as well. Therefore it is enough to set $m'' = m (m' = m)$ and $m' (m'')$ such that the edge probability in $G_1(n,m',d) (G_1(n,m'',d))$ follows (6) with $x_n \to \infty (x_n \to -\infty)$. \hfill \Box

Proof of Theorem 1. We use the same notation as in [3]. Consider an $H(n,m,d)$ such that (1) and (2) hold. The set of keys adjacent to a sensor $v \in V$ in H is denoted by W_v. Given s, let $H_s = H_s(n,m,d)$ be a bipartite graph with bipartition $(V, (W_v)^s)$, where $v \in V$ and $B \in (W_v)^s$ are adjacent whenever v covers B. Hence, $H(n,m,d)$ defines $H_s(n,m,d)$ and $H_s(n,m,d)$ defines $G_s = G_s(n,m,d)$. We note that every sensor covers $\binom{d}{s}$ joints and the probability that a given sensor covers a joint chosen uniformly at random is $\binom{d}{s}/(m)^{s-1}$. We denote $r = \binom{d}{s}$ and $p_s = r^{-1}/(m)^{s-1}$. A joint $B \in (W_v)^s$ is called \textit{thin} if the number $\sum_{v \in V} |B \subseteq W_v|$ of sensors that cover B is less than $\tilde{k} = r^{-2}(\ln \ln n)^{-1}\ln n$; otherwise, B is \textit{fat}. A sensor $v \in V$ is \textit{tiny} if every $B \in (W_v)^s$ is thin and it is \textit{heavy} if every $B \in (W_v)^s$ is fat. Otherwise, v is \textit{small}. A subset $S \subseteq V$ is heavy if all its members are heavy. We remark that our choice of \tilde{k} ensures that any set of heavy sensors has a large neighbourhood in G_s, see the property A_5 below.

We fix k and consider the following properties of a graph H_s (cf. [3]).

A_2: no two tiny sensors are within distance 8 from each other (8 hops in graph H_s);

A_3: every fat joint is covered by at most $(s+1)r$ small sensors;

A_4: there are fewer than $(2p_s)^{-1} - (k-1)$ small sensors;

A_5: for any heavy set of sensors $S \subseteq V$ of size $|S| \leq 2n/3$ we have
\[|N(S)| \geq \min\{((s+1)r^2 + r + 1)|S|, 2p_s^{-1}\}. \]

Here $N(S) = \{u \in V \setminus S : u \sim v \text{ for some } v \in S\}$ denotes the neighbourhood of S in G_s. 4
Let \mathcal{A} denote the event that the random graph H_s satisfies all the properties \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4, \mathcal{A}_5. In [3] it was shown that $P(\mathcal{A}) = 1 - o(1)$. More precisely, we have, see Lemmas 4 and 5 in [3],

$$1 - P(\mathcal{A}_i) \leq (1 + o(1)) n^{-\gamma \frac{d_n}{(d_n+2r)^2}} + n^{-r/(0.4+o(1))}, \quad i = 2, 3, 4, 5. \tag{9}$$

We remark that although our definition of the property \mathcal{A}_4 differs from that of [3], where only the case $k = 1$ is considered, the argument of the proof of the upper bound for $1 - P(\mathcal{A}_4)$ in Lemma 4 in [3] applies to an arbitrary, but fixed k. Hence (9) holds.

Now we derive (3). For this purpose we show that the event $\mathcal{A} \cap \{\delta(G_s) \geq k\}$ implies

$$\forall S \subset V \quad 1 \leq |S| \leq (n + 1)/2 \quad \text{we have} \quad N(S) \geq k. \tag{10}$$

(10) implies the k-connectivity property of G_s. In order to show that $\mathcal{A} \cap \{\delta(G_s) \geq k\}$ implies (10) we partition $V = V_T \cup V_S \cup V_H$, where V_T, V_S and V_H denote the sets of tiny, small and heavy sensors respectively. For $S \subset V_T$ (10) follows from $\delta(G_s) \geq k$ and the property \mathcal{A}_2. For $S \subset V_T \cup V_S$ with $S \cap V_S \neq \emptyset$ we find a fat joint covered by a small sensor, say v', from S. By \mathcal{A}_3, this fat joint is covered by at least $k - (s + 1)r > k$ heavy sensors which are neighbours of v' from outside S. Here, the latter inequality follows from (1). Now consider a set S such that $S_H := S \cap V_H$ is nonempty. In the case where $s_H := |S_H|$ is less than k, we fix a fat joint of a heavy vertex $v'' \in S_H$ and (in view of \mathcal{A}_3) we find at least $k - (s + 1)r$ heavy sensors that cover this joint.

Among these heavy sensors at least $k - (s + 1)r - s_H \geq k - (s + 1)r - k > s_H$ are from outside S, where the latter inequality follows from (1). Hence $N(S) \geq k$. Now assume that $s_H \geq k$. Heavy vertices of S_H all together contain at most $s_H r \times (s + 1) r$ small sensors, by property \mathcal{A}_3. In the case where $((s + 1) r^2 + r + 1)|S_H| < 2p_s^{-1}$, the property \mathcal{A}_5 yields that the set $N(S_H)$ has at least $((s + 1) r^2 + r + 1)s_H$ sensors and we know that there are at most $(s + 1) r^2 s_H$ small sensors among them. Hence $N(S_H)$ contains at least $(r + 1)s_H \geq (r + 1)k > k$ heavy sensors and, obviously, these are from outside of S. Finally, in the case where $((s + 1) r^2 + r + 1)s_H \geq 2p_s^{-1}$, the inequality $|N(S_H)| \geq 2p_s^{-1}$ implies that $N(S_H)$ contains at least k heavy sensors, because by \mathcal{A}_4 the total number of small sensors the graph G_s is less than $2p_s^{-1} - k$.

\[\square \]

Proof of Theorem 2. Denote $\lambda_n = e^{-x_n}/(k-1)!$ and $\lambda = e^{-x}/(k-1)!$. Let X_n denote the number of vertices of $G_s(n, m, d)$ of degree at most k. In view of the identity $P(\delta(G_s(n, m, d)) \geq k) = P(X_n = 0)$ it suffices to show (7) with $P(\delta(G_s(n, m, d)) \geq k)$ replaced by $P(X_n = 0)$. For this purpose we prove that, for $t = 1, 2, \ldots$,

$$\lim_{n \to +\infty} \lambda_n^t E(X_n)_t = 1. \tag{11}$$

Let us show that (11) implies (7). For $x_n \to +\infty$, (11) implies $E X_n = o(1)$ and we obtain

$$1 - P(X_n = 0) = P(X_n \geq 1) \leq E X_n = o(1),$$

by Markov’s inequality. For $x_n \to -\infty$, (11) implies $(E X_n)^2 / E X_n^2 = 1 - o(1)$ and we obtain $1 - P(X_n = 0) = P(X_n \geq 1) = 1 - o(1)$ using the Paley-Zygmund inequality $P(X_n \geq 1) \geq (E X_n^2) / E X_n^2$. Finally, for $x_n \to x$, (11) implies $E(X_n)_t = t^x (1 + o(1))$, for every $t = 1, 2, \ldots$. By the method of moments, we obtain that X_n converges in distribution to the Poisson distribution with mean λ. Hence, $P(X_n = 0) = e^{-\lambda}$.

Let us prove (11). Given t, the number $(\binom{V}{t})$ counts t-subsets of the set of vertices having degrees at most $k - 1$, thus $(X_n)_t = t! \sum_{V' \subset V, |V'| = t} \mathbb{I}_{\mathcal{B}_V'}$, where $\mathbb{I}_{\mathcal{B}_V'}$ is the indicator of the event $\mathcal{B}_V := \{\text{all vertices from } V' \text{ have degrees at most } k - 1\}$. It follows now, by symmetry, that

$$E(X_n)_t = t! \binom{n}{t} P(\mathcal{B}), \quad \text{where } \mathcal{B} := \mathcal{B}_{V^*}, \quad V^* := \{v_1, \ldots, v_t\}$$

5
Thus in order to prove (11) we are left with proving
\[P(B) = (1 + o(1)) \left(\frac{\lambda n}{n} \right)^t. \] (12)

In the proof of (12) we approximate \(P(B) \) by the probability that \(W_{v_1}, \ldots, W_{v_t} \) are disjoint, all vertices from \(V^* \) are of degree exactly \(k - 1 \) and their neighbourhoods are disjoint. Therefore we consider the following events.

\(C_0 \): each vertex from \(V^* \) has degree \(k - 1 \), \(W_{v_1}, \ldots, W_{v_t} \) are disjoint and every \(v \in V \setminus V^* \) has at most one neighbour in \(V^* \) and if such a neighbour exists, it shares with \(v \) exactly \(s \) keys, while any other member of \(V^* \) has no common keys with \(v \);

\(C_1 \): the set of vertices from \(V \setminus V^* \), having at least one neighbour in \(V^* \), can be divided into disjoint subsets \(V_1, \ldots, V_t \subseteq V \setminus V^* \) such that for every \(i = 1, \ldots, t \) we have \(|V_i| \leq k - 1 \) and all members of \(V_i \) are neighbours of \(v_i \) (we note that any vertex from \(V_i \) is allowed to be a neighbour of \(v_j \in V^* \) for \(j \neq i \)).

We have \(C_0 \subset B \subset C_1 \), i.e., event \(C_0 \) implies event \(B \), and event \(B \) implies event \(C_1 \). Hence,
\[P(C_0) \leq P(B) \leq P(C_1). \] (13)

Thus in order to prove (12) it is enough to show that
\[P(C_0) = (1 + o(1)) \left(\frac{\lambda n}{n} \right)^t, \quad P(C_1) \leq (1 + o(1)) \left(\frac{\lambda n}{n} \right)^t. \] (14)

The proof of (14) is technical. In order to avoid cumbersome formulae we introduce the notation
\[T = \frac{(n\hat{\rho})^t(k-1)!}{((k-1)!)^t} e^{-tn\hat{\rho}}, \quad \tau = \frac{d^2}{m}. \]

We observe, that \(\hat{\rho} \leq \tau^s/s! \leq \tau^s \). Let us show that \(p = \hat{\rho} - o(n^{-1}) \). We note that (4) implies \(1 > \frac{d^2}{m} \). Hence, \(\frac{d^2}{m} > \frac{d^2-d+1}{m-d+1} \). Next, the inequalities \(d^2 - d + 1 > (d-1)^2 \geq (d-s)^2 \) imply \(d^2 > \frac{(d-s)^2}{m-d+1} \). Combining this inequality with the inequalities \(\hat{\rho} \geq p \geq \hat{\rho}(1 - \frac{(d-s)^2}{m-d+1}) \) (see Lemma 1) we obtain \(\hat{\rho} \geq p \geq \hat{\rho}(1 - \frac{d^2}{m}) \). Hence, \(p = \hat{\rho}(1 - O(\tau)) \). Now, the bound \(\tau = o(\ln n) \), see (4), implies \(\hat{\rho} = O(p) \), and the bound \(p = O(n^{-1} \ln n) \), see (6), implies the desired bound \(p = \hat{\rho} - O(\hat{\rho}r) = \hat{\rho} - O(pr) = \hat{\rho} - o(n^{-1}) \). In particular, we have \(n\hat{\rho} = \ln n + (k-1) \ln \ln n + x_n + o(1) \). The latter relation implies
\[T = \left(\frac{\lambda n}{n} \right)^t (1 + o(1)). \] (15)

Evaluation of \(P(C_0) \). We have
\[P(C_0) = \frac{N_1}{N_2} N_3 p_1^{(k-1)t} (1 - p_2)^{n-t-(k-1)t}, \] (16)
where \(N_2 = \frac{m}{d} \) counts all possible collections \(W_{v_1}, \ldots, W_{v_t} \) of the sets of keys that can be assigned to \(v_1, \ldots, v_t \), while \(N_1 = \frac{m}{d} \) counts the collections of non-intersecting sets. Furthermore, \(N_3 = \frac{(n-t)!}{((k-1)!)^t (n-t-(k-1)t)!} \) counts the number of ways to assigning neighbourhoods (each of size \(k - 1 \)) to the vertices \(v_1, \ldots, v_t \), and \(p_1 = \frac{\binom{d}{k-1} \binom{m-td}{d-s}}{\binom{m}{d}} \) is the conditional probability that, given non intersecting sets \(W_{v_1}, \ldots W_{v_t} \), the vertex \(v \in V \setminus V^* \) and the vertex \(v_t \in V^* \) share exactly \(s \) keys, while any other member of \(V^* \) has no common keys with \(v \). Finally, \(p_2 \) denotes
Now we estimate the value of \(1 - \) which is adjacent to some vertex \(v \) from \(V^*\).

Let us we evaluate (16). A direct calculation shows that

\[
\frac{N_1}{N_2} N_3 p_1^{(k-1)t} = \frac{(m)_{td} (n - t)_{(k-1)t}}{(m)_{td}^t ((k-1)!)^t} \left(\frac{(d)_{s}^2 (m - td)_{d-s}}{(m)_{d}} \right)^{(k-1)t}
\]

\[
e^{-\mathcal{O}(\tau)} \frac{n(n-1)}{((k-1)!)^t} \frac{(d)_{2}^2 (m - td)_{d-s}}{s! m_d} e^{\mathcal{O}(\tau)} (1 + o(1))
\]

(17)

In the last step we used the fact that \(d^2 = o(m)\) implies \(\tau = o(1)\) and \(e^{\mathcal{O}(\tau)} = 1 + o(1))\).

Now we estimate the value of \((1 - p_2)^{n-t-(k-1)t}\). Let \(u \in V \setminus V^*\) be fixed and \(W_{v_1} \cap W_{v_2} = \emptyset\).

By inclusion-exclusion,

\[
t \mathbb{P}(u \sim v_1 | W_{v_1}) - \left(\frac{3}{2}\right) \mathbb{P}(u \sim v_1, u \sim v_2 | W_{v_1}, W_{v_2}) \leq p_2 \leq t \mathbb{P}(u \sim v_1 | W_{v_1}).
\]

Note that

\[
\mathbb{P}(u \sim v_1, u \sim v_2 | W_{v_1}, W_{v_2}) \leq \frac{(d)_{s}^2 (m - 2s)}{(m)_{d}}
\]

and so \(\mathbb{P}(u \sim v_1, u \sim v_2 | W_{v_1}, W_{v_2}) \leq \hat{p}^2\). Here \(\binom{3}{2}^2\) counts pairs \((B_1, B_2)\) of joints \(B_1 \in W_{v_1}, B_2 \in W_{v_2}\) and \(\binom{m-2s}{d-2s} \binom{m}{d}^{-1}\) is the probability that \(W_u\) covers a given pair \((B_1, B_2)\) of disjoint joints. On the other hand

\[
\mathbb{P}(u \sim v_1 | W_{v_1}) = p = \hat{p}(1 + \mathcal{O}(\tau))
\]

implies \(p_2 = t \hat{p}(1 + O(\tau + \hat{p})) = t \hat{p}(1 + O(\tau))\). Therefore we have

\[
(1 - p_2)^{n-t-(k-1)t} = \exp\{n - t - (k - 1)t \ln(1 - p_2)\} = \exp\{-tn\hat{p}\}(1 + o(1)).
\]

(18)

In the second identity of (18) we expanded the logarithm in powers of \(p_2\) and used \(np_2^2 = \mathcal{O}(np^2) = \mathcal{O}(\hat{p} \ln n)\) and \(\hat{p} \ln n \leq \tau \ln n = o(1)\), see (4). Finally, we substitute (17) and (18) to (16). Then, by (15), we get the first relation of (14).

Upper bound for \(\mathbb{P}(C_1)\). We first collect some auxiliary results. We define random variables

\[
Z_1 = |W_{v_1} \cap W_{v_2}|, \quad Z_2 = |W_{v_1} \cup W_{v_2} \cap W_{v_3}|, \ldots, \quad Z_{t-1} = |W_{v_1} \cup \cdots \cup W_{v_{t-1}} \cap W_{v_t}|
\]

and the random vector \(\bar{Z} = (Z_1, \ldots, Z_{t-1})\). We note that \(d \leq |W_{v_1} \cup \cdots \cup W_{v_t}| \leq td\), for \(i \leq t\).

Thus for \(i < t\) and for any integer \(0 \leq z \leq d\) we have

\[
\mathbb{P}(Z_i = z | W_{v_1}, \ldots, W_{v_t}) \leq \frac{(td)^z (m - d)_{d-z}}{z! (m)_{d} (d)_{z}} \frac{(m-z)_{d-z}}{z!} e^{\mathcal{O}(\tau)}
\]

(19)

Now we evaluate \((m-d)_{d-z}/(m)_{d} = m^{-z} e^{\mathcal{O}(\tau)}\) and bound, for \(s \leq z \leq d\),

\[
\frac{(td)^z}{z!} (d)_{z} \leq \frac{t^z d^z}{z!} (d)_{z} \leq e(\epsilon t)^z \frac{(d)_{s}^2}{s!} \frac{z/s}{e(\epsilon t)^z (d)_{z}}
\]

(20)

In the last step we used the inequality \(d^z \leq e^{z+1}(d)_{z}\), which follows by Stirling’s approximation, and the simple inequalities \((d)_{z}^s \leq (d)_{s}z^s\) and \((s!) \leq (z!)^s\). From (19) and (20) we obtain

\[
\mathbb{P}(Z_i = z | W_{v_1}, \ldots, W_{v_t}) \leq e(\epsilon t)^z \left(\frac{(d)_{s}^2}{s! m_d^s} \right) e^{\mathcal{O}(\tau)} = e(\epsilon t)^z (\hat{p})^{z/s}(e + o(1))
\]

(21)
uniformly in \(1 \leq i \leq t-1\), \(W_{v_1}, \ldots, W_{v_t}\) and \(s \leq z \leq d\). Given an arbitrary vector \(\vec{z} = (z_1, \ldots, z_{t-1})\) with coordinates from \(\{0, 1, \ldots, d\}\), let \(\vec{z}_s = (\mathbb{I}_{\{z_1 \geq s\}} z_1, \ldots, \mathbb{I}_{\{z_{t-1} \geq s\}} z_{t-1})\). The set of indices of non-zero coordinates of \(\vec{z}_s\) is denoted \(J_s = \{i_1, i_2, \ldots, i_r\}\). Here we assume that \(i_1 < \cdots < i_r\). For any given \(\vec{z}_s\), we have
\[
P(\vec{Z}_s = \vec{z}_s) \leq \prod_{j=1}^{r} P(Z_{i_j} = z_{i_j} | Z_{ih} = z_{ih}, 1 \leq h < j) \leq \prod_{i \in J_s} \left((\epsilon t)^{z_i} (\hat{p})^{z_i/s} (e + o(1))\right). \tag{22}\]
In the second inequality we used the fact that upper bound (21) obviously extends to conditional probabilities \(P(Z_{i_j} = z_i | Z_{ih} = z_{ih}, 1 \leq h < j)\). Denote \(S(\vec{z}) := \sum_{i \in J_s} z_i\). From (22) we obtain
\[
P(\vec{Z} = \vec{z}_s) \leq \exp\{S(\vec{z}) (s^{-1} \ln \hat{p} + \ln t + 2)\}(1 + o(1)). \tag{23}\]
We call a joint \(B\) occupied, if it is covered by some \(W_{v_i}\), for \(1 \leq i \leq t\). We observe that if the event \(\{\vec{Z} = \vec{z}\}\) holds then the number of occupied joints is at least \(N_\vec{z} = t(\frac{d}{s}) - \sum_{j=1}^{t-1} (\frac{z_j}{s})\). In particular, we have \(N_\vec{z} = t(\frac{d}{s})\) in the case where \(J_s = \emptyset\). For \(J_s \neq \emptyset\) we have
\[
N_\vec{z} = \left(t - \sum_{i \in J_s} \frac{(z_i)_s}{(d)_s}\right) \frac{d}{s} \geq \left(t - d^{-1} S(\vec{z})\right) \frac{d}{s}. \tag{24}\]
Now fix \(u \in V \setminus V^*\) and, assuming that the realized sets \(W_{v_1}, \ldots, W_{v_t}\) satisfy the condition \(\vec{Z} = \vec{z}\), consider the conditional probability (denoted \(p_\vec{z}\)) of the event that \(u\) is adjacent to some \(v_j \in V^*\), given \(W_{v_1}, \ldots, W_{v_t}\). Observing that \(p_\vec{z}\) is the probability that a random subset of \(W\) of size \(d\) covers an occupied joint we obtain
\[
p_\vec{z} \geq N_\vec{z} \left(\frac{m - td}{d - s} \right)^{m-1} \geq \left(t - d^{-1} S(\vec{z})\right) \hat{p} e^{O(r)}. \tag{25}\]
In the second inequality of (25) we applied (24) and the relation \(\left(\frac{m}{d}\right)^{m-1} = \hat{p} e^{O(r)}\).
Now we are ready to show an upper bound for \(P(C_1)\). By the law of total probability,
\[
P(C_1) = \sum_{\vec{z}} P(C_1 | \vec{Z} = \vec{z}) P(\vec{Z} = \vec{z}) = I_1 + I_2, \tag{26}\]
where \(I_1 = \sum_{\vec{z}, J_s = \emptyset} P(C_1 | \vec{Z} = \vec{z}) P(\vec{Z} = \vec{z})\) and \(I_2 = \sum_{\vec{z}, J_s \neq \emptyset} P(C_1 | \vec{Z} = \vec{z}) P(\vec{Z} = \vec{z})\).
We first estimate the conditional probabilities \(P(C_1 | \vec{Z} = \vec{z})\). Recall that \(C_1\) occurs when the set of neighbours of \(V^* = \{v_1, \ldots, v_t\}\) can be divided into disjoint subsets \(V_{i_1}, \ldots, V_{i_t}\) such that \(|V_i| \leq k - 1\) and elements of \(V_i\) are neighbours of the \(i\)-th vertex of \(V^*\), \(1 \leq i \leq t\). Denote \(l_i = |V_i|, 1 \leq i \leq t, \text{and } l := l_1 + \cdots + l_t\).
For any \(\vec{z}\) we have, by the union bound,
\[
P(C_1 | \vec{Z} = \vec{z}) \leq \sum_{l = 0}^{t(k-1)} T_l(\vec{z}), \quad T_l(\vec{z}) := \sum_{l_1 + \cdots + l_t = l} \frac{(n-t)!}{l_1! \cdots l_t!} p_\vec{z}^{l_1} (1 - p_\vec{z})^{n-l-t}. \tag{27}\]
In the definition of \(T_l(\vec{z})\), \(\frac{(n-t)!}{l_1! \cdots l_t!}\) is the number of ways we may choose sets \(V_{i_1}, \ldots, V_{i_t}\), given their cardinalities. Moreover, given \(V_{i_1}, \ldots, V_{i_t}\) and \(v_j \in V^*\), and \(u \in V_{i_1} \cup \cdots \cup V_{i_t}\), the number \(\hat{p}\) is an upper bound for the probability that \(u\) covers a joint belonging to \(v_j\) (see Lemma 1), and \(1 - p_\vec{z}\) is an upper bound on the probability that given \(u' \in V \setminus (V^* \cup V_{i_1} \cup \cdots \cup V_{i_t})\) does not cover any joint of any vertex from \(V^*\).
Let us construct an upper bound for I_1. For this purpose we estimate every $T_l(\bar{z})$, with $J_1 = \emptyset$. The latter relation implies $S(\bar{z}) = 0$ and we have $p_\bar{z} \geq t \hat{\rho} e^{O(\tau)} = \hat{\rho} + o(n^{-1})$, see (25), (4), and $(1 - p_\bar{z})^{(k-1)} = 1 - o(1)$. We obtain

$$T_l(k-1)(\bar{z}) = \frac{(n - t)(k-1)}{(k-1)!} (\hat{\rho}^{(k-1)}(1 - p_\bar{z})^{n-kt} \leq (1 + o(1))T.$$

For $l = t(k - 1) - j$, where $j \geq 1$, we have for some constant $C_{l,k,j}$ depending only on t, k, j

$$T_l(\bar{z}) \leq C_{l,k,j} T(n\hat{\rho})^{-j}.$$

Combining this inequality and the relation $n\hat{\rho} = (1 + o(1)) \ln n$ we obtain from (27) that $P(C_1|\bar{Z} = \bar{z}) \leq T(1 + o(1))$. We note that the latter inequality holds uniformly in \bar{z} satisfying $J_1 = \emptyset$. Hence, we have

$$I_1 \leq T(1 + o(1)). \tag{28}$$

Now we construct an upper bound for I_1. Given \bar{z} with $J_1 = \{i_1, \ldots, i_r\} \neq \emptyset$ we estimate $T_l(\bar{z})$. From (25) combined with the relation $e^{O(\tau)} = 1 + O(\tau) = 1 + o(\ln^{-1} n)$ we obtain

$$(1 - p_\bar{z})^{n-1-t} \leq (1 - p_\bar{z})^{n-kt} \leq \exp\{- (n - kt)p_\bar{z}\} \leq \exp\{- n\hat{\rho}(t - d^{-1} S(\bar{z})) + o(1)\}.$$

The latter inequalities imply

$$T_l(k-1)(\bar{z}) \leq (1 + o(1))T e^{-n\hat{\rho}(t - d^{-1} S(\bar{z}))}, \tag{29}$$

and

$$T_l(\bar{z}) \leq C_{l,k,j} T(n\hat{\rho})^{-j} e^{-n\hat{\rho}(t - d^{-1} S(\bar{z}))}, \quad l = t(k - 1) - j, \quad j \geq 1. \tag{30}$$

Combining (27), (29), (30) we obtain the inequality

$$P(C_1|\bar{Z} = \bar{z}) \leq (1 + o(1)) T e^{-n\hat{\rho}(t - d^{-1} S(\bar{z}))}.$$

Observing that $S(\bar{z})$ in the right hand side depends only on \bar{z}, we conclude that

$$I_2 \leq (1 + o(1)) T \sum_{\bar{z} \neq \emptyset} e^{-n\hat{\rho}(t - d^{-1} S(\bar{z}))} P(\bar{Z}_s = \bar{z}_s). \tag{31}$$

Here the sum runs over all \bar{z}_s that are not equal to $\emptyset = (0, \ldots, 0)$. Next, we invoke (23) to obtain

$$e^{-n\hat{\rho}(t - d^{-1} S(\bar{z}))} P(\bar{Z}_s = \bar{z}_s) \leq e^{S(\bar{z})\xi}, \quad \xi := d^{-1} n\hat{\rho} + s^{-1} \ln \hat{\rho} + \ln t + 2.$$

We remark that (5) implies $\xi \to -\infty$. Hence $\sum_{i \geq 1} e^{\xi i} = o(1)$. Now, given ξ with $\sum_{i \geq 1} e^{\xi i} < 1$, define independent random variables Y_1, \ldots, Y_{t-1} with the common distribution $P(Y_j = i) = e^{\xi i}$, $i = 1, 2, \ldots$, and $P(Y_j = 0) = 1 - \sum_{i \geq 1} e^{\xi i}$. The inequalities

$$\sum_{\bar{z}_s \neq 0} e^{S(\bar{z})\xi} \leq \max_{1 \leq j \leq t-1} P(Y_j \geq s) \leq (t - 1) P(Y_1 \geq 1)$$

imply

$$\sum_{\bar{z}_s \neq 0} e^{S(\bar{z})\xi} \leq (t - 1) \sum_{z \geq 1} e^{\xi z} = o(1).$$

We conclude that $I_2 = o(T)$. Combining this bound with (28) and (26) we obtain the second inequality of (14).

\[\square\]

Acknowledgements. Authors thank referees for their remarks. M. Bloznelis acknowledges support of Lithuanian Research Council grant MIP-067/2013. K. Rybarczyk is partially supported by the National Science Centre grant - DEC- 2011/01/B/ST1/03943.
References

