Abstract

Let $S(1), \ldots, S(n), T(1), \ldots, T(n)$ be random subsets of the set $[m] = \{1, \ldots, m\}$. We consider the random digraph D on the vertex set $[n]$ defined as follows: the arc $i \rightarrow j$ is present in D whenever $S(i) \cap T(j) \neq \emptyset$. Assuming that the pairs of sets $(S(i), T(i)), 1 \leq i \leq n,$ are independent and identically distributed, we study the in- and outdegree distributions of a typical vertex of D as $n, m \to \infty$.

key words: random intersection digraph, degree distribution, clustering, random intersection graph

1 Introduction

Given two collections of subsets $S(1), \ldots, S(n)$ and $T(1), \ldots, T(n)$ of a set $W = \{w_1, \ldots, w_m\}$, define the intersection digraph on the vertex set $V = \{v_1, \ldots, v_n\}$ such that the arc $v_i \rightarrow v_j$ is present in the digraph whenever $S(i) \cap T(j) \neq \emptyset$ for $i \neq j$. Assuming that the sets $S(i)$ and $T(i), i = 1, \ldots, n,$ are drawn at random, we obtain a random intersection digraph.

We consider the class of random intersection digraphs where the pairs of random subsets $(S(i), T(i)), i = 1, \ldots, n,$ are independent and identically distributed. In addition, we assume that the distributions of $S(i)$ and $T(i)$ are mixtures of uniform distributions. That is, for every k, conditionally on the event $|S(i)| = k$, the random set $S(i)$ is uniformly distributed in the class W_k of all subsets of W of size k. Similarly, conditionally on the event $|T(i)| = k$, the random set $T(i)$ is uniformly distributed in W_k. In particular, with P_{S*} and P_{T*} denoting the distributions of $|S(i)|$ and $|T(i)|$, we have that, for every $A \subset W$, $P(S(i) = A) = \binom{m}{|A|}^{-1} P_{S*}(|A|)$ and $P(T(i) = A) = \binom{m}{|A|}^{-1} P_{T*}(|A|)$. By $D(n, m, P_*)$ we denote the random intersection digraph generated by independent and identically distributed pairs of random subsets $(S(i), T(i)), 1 \leq i \leq n,$ where P_* denotes the common distribution of pairs $(S(i), T(i))$.

Up to our best knowledge, the intersection digraphs with possibly infinite “ground” set W were first studied by Beineke and Zamfirescu [2] and Harary, Kabell, and McMorris [10]. Since then, several tens of papers related to geometric intersection digraphs (interval digraphs, etc.) have appeared in the literature, see, e.g., [1] and references therein. Random intersection digraphs

1Research supported by the Research Council of Lithuania Grant MIP-10088
D(n, m, P_s) differ much from geometric intersection digraphs. We show that they are flexible enough to model random digraphs with in- and outdegrees having some desired statistical properties, such as, e.g., a power-law outdegree distribution and a bounded-support indegree distribution. Assuming, for example, that S(i) and T(i) intersect with positive probability, we can obtain a random digraph with a clustering property; see Example 2 in Section 2 below.

Note that the related random intersection graph model introduced by Karoński, Scheinerman, and Singer-Cohen [13] and Singer-Cohen [14] (see also Godzhe and Jaworski [9]), has received considerable attention in recent literature ([8], [7], [15], [12], [6], [3], etc.). The increasing number of applications of this model motivated our interest in its directed counterpart D(n, m, P_s).

The paper is organized as follows: the results are formulated in Section 2 and proved in Section 3.

2 Results

We describe conditions on P_{S, a} and P_{T, a} that make the in- and outdegrees of D(n, m, P_s) stochastically bounded and converging in distribution as n, m → ∞. Our motivation to consider the case of stochastically bounded degrees separately is that random digraphs with stochastically bounded indegrees (or outdegrees) are sparse.

We consider a sequence of random intersection digraphs D_n = D(n, m_n, P_n), where m_n → ∞ as n → ∞. We assume without loss of generality that there are two countable sets V = \{v_1, v_2, \ldots \} and W = \{w_1, w_2, \ldots \} such that, for every n, the random digraph D_n is defined on the vertex set V_n = \{v_1, \ldots , v_n\} and the ground set W_n = \{w_1, \ldots , w_{m_n}\}. Given n, let \{S_n(v), T_n(v), v \in V_n\} denote the collection of subsets of W_n that defines the intersection digraph D_n. We denote X_{n, i} = |S_n(v_i)| and Y_{n} = |T_n(v_i)|, v \in V_n. In particular, (X_{n, 1}, Y_{n, 1}), \ldots , (X_{n, n}, Y_{n, n}) are independent and identically distributed bivariate random vectors with nonnegative integer coordinates taking values in [0, m_n]^2. Given a vertex v \in V_n, let

\[I_n(v) = \sum_{u \in V_n \setminus \{v\}} \mathbb{I}_{\{u \to v\}}, \quad O_n(v) = \sum_{u \in V_n \setminus \{v\}} \mathbb{I}_{\{v \to u\}} \]

denote the indegree and outdegree of v in D_n that do not count the possible loop v \to v. Note that, by symmetry, the random variables I_n(v), v \in V_n have the same probability distribution. Similarly, all O_n(v), v \in V_n, have the same probability distribution.

Introduce the random variables

\[\hat{O}_n = X_{n, 1} Y_{n, 2} + \cdots + Y_{n, m_n} m_n^{-1}, \quad \hat{I}_n = Y_{n, 1} X_{n, 2} + \cdots + X_{n, m_n} m_n^{-1}, \]
\[\hat{O}_n^* = X_{n, 1}^2 Y_{n, 2}^2 + \cdots + Y_{n, m_n}^2 m_n^{-2}, \quad \hat{I}_n^* = Y_{n, 1}^2 X_{n, 2}^2 + \cdots + X_{n, m_n}^2 m_n^{-2}. \]

Recall that a sequence of random variables \{Z_n\} is called stochastically bounded if, for every ε > 0, there exists B = B_ε > 0 such that P(|Z_n| ≥ B) < ε for every n. We write Z_n = o_P(1) if, in addition, P(|Z_n| ≥ δ) = o(1) as n → ∞ for every δ > 0.

Theorem 1. (i) Assume that the sequence \{\hat{O}_n\} is stochastically bounded. Then the sequence \{O_n(v_1)\} is stochastically bounded.

(ii) Assume that the sequence \{\hat{I}_n\} is stochastically bounded. Then the sequence \{I_n(v_1)\} is stochastically bounded.

(iii) Assume that the sequence \{\hat{O}_n\} converges in distribution to a random variable \hat{Y} and \hat{O}_n^* = o_P(1) as n → ∞. Then the sequence \{O_n(v_1)\} converges in distribution to a random variable \hat{O}_∞ with the distribution

\[P(O_∞ = k) = (k!)^{-1} E(\hat{Y}^k e^{-\hat{Y}}), \quad k = 0, 1, 2, \ldots \]

2
(ii') Assume that the sequence \(\{I_n\} \) converges in distribution to a random variable \(\tilde{Z} \) and \(I_n' = o_P(1) \) as \(n \to \infty \). Then the sequence \(\{I_n(v_i)\} \) converges in distribution to a random variable \(\tilde{I}_\infty \) with the distribution

\[
P(I_\infty = k) = (k!)^{-1} \mathbb{E}(\tilde{Z}^k e^{-\tilde{Z}}), \quad k = 0, 1, 2, \ldots.
\]

Note that (2) and (3) are mixed Poisson distributions (i.e., Poisson distributions \(P(\lambda) \) with random parameters \(\lambda = \tilde{Y} \) and \(\lambda = \tilde{Z} \), respectively).

Example 1. Let \(X_{n1} \equiv 1 \), and let \(m_n^{-1}Y_{nk} \) have Bernoulli distribution with success probability \(n^{-1} \) for every \(1 \leq k \leq n \). Then \(\tilde{O}_n = \tilde{O}_n' \) and \(O_n(v) \) have binomial distribution \(Bi(n-1, n^{-1}) \). Therefore, \(\tilde{O}_n' \neq o_P(1) \), and the limiting distribution of the outdegree sequence \(\{O_n(v)\} \) is the Poisson distribution with mean 1, which now differs from (2).

The example suggests that the convergence in distribution of \(\{\tilde{O}_n\} \) alone is not sufficient for the convergence of distributions of \(O_n(v) \) to the distribution (2).

Remark 1. The statements (i), (i') of Theorem 1 hold for the indegrees \(I_n'(v) = I_n(v) + \mathbb{I}_{\{v\to v\}} \) and the outdegrees \(O_n'(v) = O_n(v) + \mathbb{I}_{\{v\to v\}} \), which now count the possible loop \(v \to v \). Since the probability \(P(v \to v) \) may not vanish as \(n \to \infty \), in order to obtain limit theorems for distributions of \(I_n'(v) \) and \(O_n'(v) \), one needs to impose an extra conditions on the joint distribution \(P_n \) of the pair of random sets \((S_n(v), T_n(v)) \). For example, if \(S_n(v) \) and \(T_n(v) \) are independent, then the results (ii), (ii') of Theorem 1 and that of Corollary 1 below extend to the sequences \(\{I_n'(v)\} \) and \(\{O_n'(v)\} \).

In the remaining part of this section, we consider the important particular case where \(n = O(m_n) \) and the random sets \(S_n(v) \) and \(T_n(v) \) are of the same scale. In particular, we assume that \(n \leq cm_n \) for some absolute constant \(c > 0 \) and that \(|S_n(v)|, |T_n(v)| = O_P(\sqrt{m_n/n}) \).

The next result is formulated for the outdegree sequence \(\{O_n(v)\} \) only. Obviously, the analogous result holds for the indegree sequence \(\{I_n(v)\} \) as well.

Corollary 1. Assume that

(i) \(\{X_{n1}(n/m_n)^{1/2}\} \) converges in distribution to a random variable \(X_\infty \);

(ii) \(\{Y_{n1}(n/m_n)^{1/2}\} \) converges in distribution to a random variable \(Y_\infty \);

(iii) \(EY_\infty < \infty \), and \(\lim_n EY_{n1}(n/m_n)^{1/2} = EY_\infty \).

Then \(\{O_n(v)\} \) converges in distribution to \(O_\infty \); see (2), where \(\tilde{Y} = X_\infty EY_\infty \).

Vertex degree distribution of a random intersection graph was studied in [15], [12], [6], and [4]. Theorem 1 and Corollary 1 extend related results of these papers to the random intersection digraph \(D(n, m, P_s) \). Let us mention that our proof differs from those of [15], [12], [6], and [4] and leads to more general and precise results.

Next, we give an example of random intersection digraph with a clustering property.

Example 2 (cf. [6]). Fix \(a > 0 \) and let \(m = \lfloor an \rfloor \). Let \(X_1, X_2, X_3 \geq 0 \) be independent integer-valued random variables with finite first moments \(\alpha_i = EX_i \), and let \(Z_1, Z_2, Z_3 \) be independent random subsets of \(W = \{w_1, \ldots, w_m\} \) such that, given \(X_i \), the random set \(Z_i \) is uniformly distributed in the class of subsets of \(W \) of size \(X_i \cap m, 1 \leq i \leq 3 \). Here we denote \(x \land y = \min\{x, y\} \). Put \(S = Z_1 \cup Z_3 \) and \(T = Z_2 \cup Z_3 \), and let \(D_n \) be the random intersection digraph defined by the sequence \(\{(S(v_i), T(v_i))\}, 1 \leq i \leq n \) of independent copies of \((S, T) \). Note that, by Corollary 1, the in- and outdegree distributions of \(D_n \) converge to nondegenerate limits, provided that \(\alpha_1 + \alpha_3, \alpha_2 + \alpha_3 > 0 \). If, in addition, \(\alpha_3 > 0 \) (i.e., \(\lim_n P(S \cap T \neq \emptyset) > 0 \)) and the second moments \(\beta_i = EX_i^2 \) are finite, then the conditional probabilities of a triangle, given any two of its sides, are positive and bounded away from zero as \(n \to \infty \). In particular, we have, as
\(n \to \infty, \)
\[
p_{13|12,23} = \alpha_3(\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_2\alpha_3 + \beta_3)^{-1} + o(1),
\]
\[
p_{31|12,23} = \alpha_3(\alpha_1 + \alpha_3)^{-1}(\alpha_2 + \alpha_3)^{-1}(\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_2\alpha_3 + \beta_3)^{-1} + o(1),
\]
\[
p_{13|12,32} = \alpha_3(\alpha_2 + \alpha_3)(\alpha_1 + \alpha_3)^{-1}(\beta_2 + 2\alpha_2\alpha_3 + \beta_3)^{-1} + o(1),
\]
\[
p_{13|21,23} = \alpha_3(\alpha_1 + \alpha_3)(\alpha_2 + \alpha_3)^{-1}(\beta_1 + 2\alpha_1\alpha_3 + \beta_3)^{-1} + o(1).
\]
Here \(p_{ij|st,fg} = P(v_i \to v_j | v_s \to v_t, v_f \to v_g) \) denotes the conditional probability of the arc \(v_i \to v_j \), given the event that arcs \(v_s \to v_t \) and \(v_f \to v_g \) are present in \(D_n \).

3 Proof

We start with auxiliary Lemma 1. Then we prove Theorem 1 and Corollary 1. Relations (4) are shown at the end of the section.

Lemma 1. Let \(S_1, S_2 \) be independent random subsets of the set \(W = \{1, \ldots, m\} \) such that \(S_1 \) (respectively \(S_2 \)) is uniformly distributed in the class of subsets of \(W \) of size \(j \) (respectively \(k \)). Then the probability \(p' := P(S_1 \cap S_2 = \emptyset) = (m-k)/m \) satisfies, for \(j+k < m \),
\[
1 - \frac{j+k}{1 - (j+k)/m} \leq p' \leq 1 - \frac{j+k}{m} + \left(\frac{j+k}{m}\right)^2.
\]
Here we denote \((m)_j = m(m-1) \cdots (m-j+1) \). For \(0 < \alpha < 1 \) and \(j+k \leq \alpha m \), we have
\[
\frac{j+k}{m} + \frac{2}{1-\alpha}\left(\frac{j+k}{m}\right)^2 \geq P(S_1 \cap S_2 = \emptyset) \geq \frac{j+k}{m} - \left(\frac{j+k}{m}\right)^2.
\]
We also have
\[
P(|S_1 \cap S_2| \geq 2) \leq 2^{-1}(jk)^2m^{-2}.
\]

Proof of Lemma 1. Inequalities (5) and (6) are shown in [12]; see also [4]. Let us prove (7). Write \(S_1 = \{u_1, \ldots, u_j\} \) and let \(i_1 = \min\{i : u_i \in S_1 \cap S_2\} \) and \(i_2 = \min\{i > i_1 : u_i \in S_1 \cap S_2\} \). We have \(P(|S_1 \cap S_2| \geq 2) = \sum_{1 \leq s < \ell \leq j} P(i_1 = s, i_2 = \ell) \). Invoking the identity \(P(i_1 = s, i_2 = \ell) = \frac{(m-k)(m-2k)}{(m)_j^2} \), we obtain (7). \(\square \)

Proof of Theorem 1. We prove (i) and (ii). The proof of (i') and (ii') is much the same. Write, for short, \(O_n = O_n(v_1) \). Given a vector \(\vec{x} = (x, y_2, \ldots, y_n) \) with integer coordinates, we denote
\[
\lambda(\vec{x}) = (x/m_n) \sum_{2 \leq k \leq n} y_k, \quad \kappa(\vec{x}) = (x/m_n)^2 \sum_{2 \leq k \leq n} y_k^2.
\]
Let us prove (i). Split \(O_n = \xi_n + \eta_n \), where
\[
\xi_n := \sum_{2 \leq i \leq n} I_{\{v_i \to v_j\}} I_{\{4X_nY_{ni} \leq m_n\}}, \quad \eta_n := \sum_{2 \leq i \leq n} I_{\{v_i \to v_j\}} I_{\{4X_nY_{ni} > m_n\}}.
\]
We shall show that both sequences \(\{\xi_n\} \) and \(\{\eta_n\} \) are stochastically bounded. Fix \(0 < \varepsilon < 1 \). Choose a (nonrandom) number \(B_\varepsilon > \varepsilon^{-1} \) such that the event \(\mathcal{H}_n := \{\tilde{O}_n < B_\varepsilon\} \) has the probability \(P(\mathcal{H}_n) \geq 1 - \varepsilon \) for every \(n \). The sequence \(\{\eta_n\} \) is stochastically bounded because of the inequality
\[
P(\eta_n \geq 4B_\varepsilon) < \varepsilon \Leftrightarrow P(|\{\eta_n \geq 4B_\varepsilon\} \cap \mathcal{H}_n) = \varepsilon.
\]
Indeed, we have $P(\{\eta_n \geq 4B_\varepsilon\} \cap \mathcal{H}_n) = 0$, since on the event \mathcal{H}_n, the number of summands $I_{\{4X_{n1}Y_{ni} > m_n\}}$ taking value 1 is less than $4B_\varepsilon$.

In order to show that $\{\xi_n\}$ is stochastically bounded, we use the fact that, given

$$X_{n1} = x, \quad Y_{n2} = y_2, \ldots, \quad Y_{nn} = y_n,$$

the random variable ξ_n is the sum $\tau_2 + \cdots + \tau_n$ of (conditionally) independent Bernoulli random variables τ_i with success probabilities

$$p_i = P\left(S_n(v_i) \cap T_n(v_i) \neq \emptyset \bigg| X_{n1} = x, Y_{ni} = y_i \right) \mathbb{I}_{\{4xy\leq m_n\}}.$$

In addition, we have

$$p_i \leq (2/m_n)xy_\varepsilon \mathbb{I}_{\{4xy\leq m_n\}}.$$ \hspace{1cm} (9)

For $xy = 0$, inequality (9) is trivial. Indeed, in this case, at least one of the sets $S_n(v_1), T_n(v_1)$ is empty. For $x, y \geq 1$ satisfying $4xy \leq m_n$, we have $x + y \leq 2xy \leq 2^{-1}m_n$. Now (9) follows from (6).

Let $P_{x,y}$ and $E_{x,y}$ denote the conditional distribution and the conditional expectation given the event (8). In view of (9), we have on the event \mathcal{H}_n that

$$E_{x,y}\xi_n = \sum_{2 \leq i \leq n} p_i \leq 2B_\varepsilon.$$

In addition, by Chebyshev’s inequality,

$$P_{x,y}(\xi_n > 3B_\varepsilon) = P_{x,y}(\xi_n - E_{x,y}\xi_n > 3B_\varepsilon - E_{x,y}\xi_n) \leq \sum_{2 \leq i \leq n} p_i B_\varepsilon^{-2} \leq 2B_\varepsilon^{-1} < 2\varepsilon.$$ \hspace{1cm} (10)

Finally, we obtain

$$P(\xi_n > 3B_\varepsilon) < \varepsilon + P(\{\xi_n > 3B_\varepsilon\} \cap \mathcal{H}_n) = \varepsilon + E\left(I_{\mathcal{H}_n} P(\xi_n > 3B_\varepsilon \bigg| X_{n1}, Y_{n2}, \ldots, Y_{nn}) \right) \leq \varepsilon + E(I_{\mathcal{H}_n} 2\varepsilon) \leq 3\varepsilon.$$

Here, in the first step, we invoke the inequality $P(\mathcal{H}_n) \geq 1 - \varepsilon$. In the second step, we apply bound (10) to the conditional probability $P\left(\xi_n > 3B_\varepsilon \bigg| X_{n1}, Y_{n2}, \ldots, Y_{nn} \right)$ of the event $\{\xi_n > 3B_\varepsilon\}$ given $X_{n1}, Y_{n2}, \ldots, Y_{nn}$. Hence, the sequence $\{\xi_n\}$ is stochastically bounded. The proof of statement (i) is complete.

Let us prove (ii). Let $f_n(t) = E e^{it\tilde{O}_n}$ and $f_\infty(t) = E e^{it\tilde{O}_\infty}$ denote the Fourier transforms of the probability distributions of \tilde{O}_n and \tilde{O}_∞. In order to prove (ii), we show that $\lim_n f_n(t) = f_\infty(t)$ for every real t.

Given $0 < \delta < 0.01$ and integer n, introduce the event $\mathcal{A}_n = \{\tilde{O}_n^* < \delta\}$. Note that $P(\mathcal{A}_n) = 1 - o(1)$ as $n \to \infty$. Therefore, we have

$$f_n(t) = E(e^{it\tilde{O}_n} \mathbb{I}_{\mathcal{A}_n}) + o(1).$$ \hspace{1cm} (11)
On the event \(A_n \), we approximate the conditional characteristic function
\[
f_n(t; \overline{x} \overline{y}) := \mathbb{E}(e^{itO_n} | X_{n1} = x, Y_{n2} = y_2, \ldots, Y_{nn} = y_n)
\]
by the Fourier transform of the Poisson distribution with mean \(\lambda(\overline{x} \overline{y}) \),
\[
g_n(t; \overline{x} \overline{y}) = \exp\{\lambda(\overline{x} \overline{y})(e^{it} - 1)\}.
\]
Since the conditional distribution of \(O_n \), given (8), is that of the sum of independent Bernoulli random variables with success probabilities
\[
q_k = P\left(S_n(v_1) \cap T_n(v_k) \neq \emptyset \mid X_{n1} = x, Y_{nk} = y_k\right), \quad 2 \leq k \leq n,
\]
we write
\[
f_n(t; \overline{x} \overline{y}) = \prod_{2 \leq k \leq n} (1 + q_k(e^{it} - 1)) = \exp\left\{ \sum_{2 \leq k \leq n} \ln(1 + q_k(e^{it} - 1)) \right\}.
\]
Note that, on the event \(A_n \), we have \(x^2y_k^2/m_n^2 \leq \delta \leq 0.01 \). Therefore, (6) implies
\[
\frac{x^2y_k^2}{m_n} - \frac{(x^2y_k^2)}{m_n} \leq q_k \leq \frac{x^2y_k^2}{m_n} + 4\left(\frac{x^2y_k^2}{m_n}\right)^2, \quad 2 \leq k \leq n.
\]
In particular, for each \(k \), we have \(|q_k(e^{it} - 1)| < 0.5 \). Invoking the inequality \(|\ln(1+z) - z| \leq |z|^2 \) for complex numbers \(z \) satisfying \(|z| \leq 0.5 \) (see, e.g., Proposition 8.46 of [5]), we obtain
\[
f_n(t; \overline{x} \overline{y}) = \exp\{\lambda(\overline{x} \overline{y})(e^{it} - 1) + r(t)\},
\]
where \(|r(t)| \leq \kappa(\overline{x} \overline{y}) \). Here and below, \(\kappa \) and \(c' \) denote absolute constants. Now, the bound \(\kappa(\overline{x} \overline{y}) < \delta \), which holds on the event \(A_n \), implies that \(|f_n(t; \overline{x} \overline{y}) - g_n(t; \overline{x} \overline{y})| \leq c' \delta \). Invoking this inequality in (11), we obtain
\[
|f_n(t) - \mathbb{E}\exp\{\hat{O}_n(e^{it} - 1)\}| \leq c' \delta + o(1) \quad \text{as} \quad n \to \infty.
\]
Finally, the convergence of distributions of \(\hat{O}_n \) implies the convergence of corresponding expectations of bounded continuous functions. Therefore, \(\lim_n \mathbb{E}e^{O_n(e^{it} - 1)} = f_\infty(t) \). We obtain the inequality \(\lim_n |f_n(t) - f_\infty(t)| \leq c' \delta \), which holds for arbitrarily small \(\delta > 0 \). The proof of (ii) is complete. \(\square \)

Proof of Corollary 1. Denote \(\mathbb{E}Y_\infty = a \). For \(\varepsilon > 0 \) and \(1 \leq k \leq n \), denote
\[
Z_{nk} = Y_{nk}(n/m_n)^{1/2}, \quad Z_{nkek} = Z_{nk}1_{Z_{nk} \leq n\varepsilon}, \quad a_n = \mathbb{E}Z_{n1}, \quad a_{n\varepsilon} = \mathbb{E}Z_{n1\varepsilon}.
\]
In view of statement (ii) of Theorem 1 and the identities
\[
\hat{O}_n = X_{n1}(n/m_n)^{1/2}(Z_{n2} + \cdots + Z_{nn})n^{-1}, \quad \hat{O}_n^* = X_{n1}^2(n/m_n)(Z_{n2}^2 + \cdots + Z_{nn}^2)n^{-2},
\]
the corollary would follow if we show that
\[
(Z_{n2} + \cdots + Z_{nn})n^{-1} - a_n = o_P(1); \quad (Z_{n2}^2 + \cdots + Z_{nn}^2)n^{-2} = o_P(1).
\]
The proof of (13) and (14) is obtained by a routine application of the truncation argument. In the proof, we also use the observation that conditions (ii) and (iii) imply the uniform integrability of the sequence of random variables \(\{Z_{n1}\} \); see, e.g., [4]. That is,
\[
\forall \varepsilon > 0, \exists \Delta > 0 \quad \text{such that} \quad \forall n \geq 1, \quad \text{we have} \quad \mathbb{E}(Z_{n1}1_{Z_{n1} > \Delta}) < \varepsilon.
\]
In order to prove (13), we shall show that, for every $0 < \delta < 1$,
\[
\lim_{n} P\left(\left|Z_{n2} + \cdots + Z_{nn}(n-1)^{-1} - a_n\right| > 2\delta\right) \leq a\delta.
\] (16)

Fix $0 < \delta < 1$ and put $\varepsilon = \delta^3$. Introduce the events
\[
B_n = \left\{\left|Z_{n2} + \cdots + Z_{nn}(n-1)^{-1} - a_n\right| > \delta\right\}, \quad D_n = \left\{\max_{2 \leq k \leq n} Z_{nk} \leq n\varepsilon\right\}.
\]

It follows from (15) that, as $n \to \infty$,
\[
0 \leq a_n - a_n\varepsilon = E\left(Z_{n1}\mathbb{1}_{\{Z_{1n} > \varepsilon\}}\right) = o(1),
\] (17)
\[
1 - P(D_n) \leq (n-1)P(Z_{nk} > n\varepsilon) \leq \varepsilon^{-1}E\left(Z_{n1}\mathbb{1}_{\{Z_{1n} > \varepsilon\}}\right) = o(1).
\] (18)

In view of (17) and (18), we can replace a_n by $a_n\varepsilon$ and Z_{nk} by $Z_{nk\varepsilon}$ in (16). In particular, (16) follows from the inequality
\[
\lim_{n} P\left(B_n\right) \leq a\delta.
\] (19)

Let us prove (19). By Chebyshev’s inequality and symmetry,
\[
P\left(B_n\right) \leq \delta^{-2}(n-1)^{-1}E\left(Z_{n1\varepsilon} - a_n\varepsilon\right)^2.
\]

Invoking the simple inequalities
\[
E\left(Z_{n1\varepsilon} - a_n\varepsilon\right)^2 \leq EZ_{n1\varepsilon}^2 \leq n\varepsilon EZ_{n1\varepsilon} \leq n\varepsilon a_n,
\]
we obtain $P\left(B_n\right) \leq (n/(n-1))a_n\delta$. This inequality implies (19). The proof of (13) is complete.

Let us prove (14). For this purpose, given $\varepsilon > 0$, we show that
\[
\lim_{n} P\left(Z_{n2}^2 + \cdots + Z_{nn}^2 > \varepsilon n^2\right) \leq a\varepsilon.
\] (20)

Introduce the events $K_n = \{\max_{2 \leq k \leq n} Z_{nk} \leq \varepsilon^2 n\}$. By symmetry and Markov’s inequality, we obtain from (15) that
\[
1 - P(K_n) \leq (n-1)P(Z_{nk} > \varepsilon^2 n) \leq \varepsilon^{-2}E\left(Z_{n1}\mathbb{1}_{\{Z_{1n} > \varepsilon^2 n\}}\right) = o(1)
\] (21)
as $n \to \infty$. Similarly, by symmetry and Markov’s inequality, we have
\[
P\left(\{Z_{n2}^2 + \cdots + Z_{nn}^2 > \varepsilon^2 n\} \cap K_n\right) \leq P\left(Z_{n2} + \cdots + Z_{nn} > n\varepsilon^{-1}\right) \leq \varepsilon E\left(Z_{n2}\right).
\]

This inequality in combination with (21) shows (20). We have arrived at (14).

Proof of (4). We sketch the proof of the first identity of (4). The remaining identities are obtained in much the same way.

Given $v \in V_n = \{v_1, \ldots, v_n\}$, let $Z_1(v), Z_2(v), Z_3(v)$ denote the random sets that define the pair $(S(v), T(v))$, i.e., $S(v) = Z_1(v) \cup Z_3(v)$ and $T(v) = Z_2(v) \cup Z_3(v)$. We write $X_{ij} = |Z_i(v_j)|$ and $\bar{X} = \{X_{ij}, 1 \leq i, j \leq 3\}$. Given $\bar{x} = \{x_{ij}, 1 \leq i, j \leq 3\}$, we use the shorthand notation for the conditional probability $P_{\bar{x}}(\cdot) := P(\cdot|\bar{X} = \bar{x})$. The conditional probabilities of the events
\[
I_1 = \{v_1 \to v_2, v_2 \to v_3\}, \quad I_2 = \{v_1 \to v_2, v_2 \to v_3, v_1 \to v_3\}
\]
are denoted $p_k(\bar{x}) = P_{\bar{x}}(I_k), k = 1, 2$. We shall show that, as $m \to \infty$,
\[
P_{\bar{x}}(\bar{X}) = m^{-2}E_{\bar{x}}(\bar{X}) + o(m^{-2}), \quad k = 1, 2.
\] (22)
Here \(a_1(\bar{x}) = (x_{11} + x_{31})(x_{22} + x_{32})(x_{12} + x_{32})(x_{23} + x_{33}) \) and \(a_2(\bar{x}) = (x_{11} + x_{31})x_{32}(x_{23} + x_{33}) \). Observe that substitution of (22) into the identity \(p_{13|12,23} = E_{P_2(X)} / E_{P_1(X)} \) gives (4).

In order to prove (22), we show that, for every \(c \geq 1 \), we have, uniformly in \(\bar{x} \subset [0,c] \),

\[
p_k(\bar{x}) = m^{-2}a_k(\bar{x}) + o(m^{-2}), \quad k = 1, 2.
\]

(23)

Clearly, for bounded random variables \(X_{ij} \in \bar{X} \), (22) is an immediate consequence of (23). If \(X_{ij} \) are not bounded but have finite second moments, we can safely replace \(X_{ij} \) by the truncated random variables \(X_{ij} \wedge (m/4) \) and then apply (23) to the truncated random variables. We omit the details.

Let us prove (23). Let \(A_i \) denote the event that \(Z_1(v_i), Z_2(v_i), Z_3(v_i) \) are pairwise disjoint. Write \(A = A_1 \cap A_2 \cap A_3 \) and let \(\bar{A} \) denote the event complement to \(A \). Denoting the conditional probabilities \(p_k^i(\bar{x}) = P_{\bar{x}}(I_k|A) \) and \(p_k^i(\bar{x}) = P_{\bar{x}}(I_k|\bar{A}) \), we write

\[
p_k(\bar{x}) = p_k^i(\bar{x}) + (p_k^{ii}(\bar{x}) - p_k^i(\bar{x}))P_{\bar{x}}(\bar{A}).
\]

(24)

Note that (6) implies \(P_{\bar{x}}(\bar{A}) \sim O(m^{-1}) \). Now (23) follows from (24) and from the bounds

\[
p_k^i(\bar{x}) = m^{-2}a_k(\bar{x}) + O(m^{-3}), \quad p_k^{ii}(\bar{x}) \leq m^{-2}a_k(\bar{x}) + O(m^{-3}).
\]

(25)

In order to prove (25), for \(k = 1 \), we apply (6) to the pairs of random sets \(S(v_1), T(v_2) \) and \(S(v_2), T(v_3) \). In particular, the inequalities \(|S(v_1)| \leq x_{11} + x_{31} \) and \(|T(v_1)| \leq x_{21} + x_{31} \) imply the second bound of (25). Similarly, the identities

\[
|S(v_1)| = x_{11} + x_{31}, \quad |T(v_1)| = x_{21} + x_{31},
\]

(26)

which hold on the event \(A \), imply the first bound of (25).

Let us prove (25) for \(k = 2 \). We only prove the first bound. The proof of the second bound is much the same. Denote \(H = S(v_2) \cap T(v_2) \), \(U = S(v_2) \cap T(v_2) \) and introduce the events

\[
C' = \{|H \cap S(v_1)| = 1\}, \quad C'' = \{|H \cap S(v_1)| \geq 2\},
\]

\[
D' = \{|H \cap T(v_3)| = 1\}, \quad D'' = \{|H \cap T(v_3)| \geq 2\},
\]

\[
E = \{S(v_1) \cap T(v_3) \cap (W \setminus H) = \emptyset\}.
\]

Write \(C = \{S(v_1) \cap H \neq \emptyset\} = C' \cup C'' \) and \(D = \{T(v_3) \cap H \neq \emptyset\} = D' \cup D'' \), and observe that \(I_2 = I_2 \cap C \cap D \). We are going to replace \(p_2(\bar{x}) = P_{\bar{x}}(I_2, \bar{A}) \) by \(p_2^{i}(\bar{x}) = P_{\bar{x}}(I_2 \cap H, \bar{A}) \), where \(H = C' \cap D' \cap E \). For this purpose, we first split

\[
C \cap D = (C \cap D'^*) \cup (C' \cap D') \cup (C'' \cap D'^*)
\]

and replace \(p_2^{i}(\bar{x}) \) by \(p_2^{ii}(\bar{x}) = P_{\bar{x}}(I_2 \cap C' \cap D', \bar{A}) \). The error of this replacement

\[
0 \leq p_2^{ii}(\bar{x}) - p_2^{ii}(\bar{x}) \leq \bar{p}_1 + \bar{p}_2,
\]

where \(\bar{p}_1 = P_{\bar{x}}(C \cap D'^*, A) \) and \(\bar{p}_2 = P_{\bar{x}}(C'' \cap D'^*, A) \). Secondly, we replace \(p_2^{ii}(\bar{x}) \) by \(p_3(\bar{x}) \). We have

\[
0 \leq p_2^{ii}(\bar{x}) - p_3(\bar{x}) \leq \bar{p}_3, \quad \bar{p}_3 = P_{\bar{x}}(C' \cap D' \cap E, \bar{A}).
\]

Here \(E \) denotes the event complement to \(E \). Invoking the simple bounds, which follow from Lemma 1,

\[
\bar{p}_1, \bar{p}_2, \bar{p}_3 = O(m^{-3}),
\]

(27)

we obtain \(p_2^{ii}(\bar{x}) = p_2^{ii}(\bar{x}) + O(m^{-3}) \). Observe that the event \(I_2 \cap H \) holds whenever

\[
|S(v_1) \cap T(v_3) \cap U| = 1, \quad (S(v_1) \cap T(v_3)) \cap (W_n \setminus U) = \emptyset.
\]

(28)

Finally, it follows from Lemma 1 that the event (28) has the probability

\[
|S(v_1)| \times |T(v_3)| \times |U|/m^2 + O(m^{-3}) = a_2(\bar{x}) + O(m^{-3}).
\]

In the last step, we invoke (26) and the identity \(|U| = x_{32} \).
Acknowledgement. I would like to thank anonymous referees for their valuable comments and suggestions.

References

