Situation versus Case and Two Kinds of Legal Subsumption

Vytautas ČYRAS
Vilnius University
Faculty of Mathematics and Informatics
Vilnius, Lithuania
Vytautas.Cyras@mif.vu.lt

Friedrich LACHMAYER
University of Innsbruck
Faculty of Law
Innsbruck, Austria
Friedrich.Lachmayer@uibk.ac.at

IRIS 2013, Salzburg, 21-23 February 2013
Distinctions of situation and case

situation = type of behaviour, i.e. abstract
- implicit in reality, i.e. on the Is stage
- elements of Ought are inside

case = instance of behaviour, i.e. concrete
- expressed explicitly in acts

Indication: left turn.
Status: right to priority over 1 and 2.
Behaviour: drives second.

Indications: 1 – left turn; 2 – straight.
Status: • duty to give priority to 4.
 • duty to give priority to 3:
 – legal rule “Give priority to the right”.
Behaviour: both drive third.

Indication: blue-red beacon and sound signal.
Status: priority right over automobiles 1, 2 and 3
 - legal rule “Beacon”.
Behaviour: drives first.

Indication: left turn.
Status: right to priority over 1 and 2.
Behaviour: drives second.
<table>
<thead>
<tr>
<th>Situation</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Generic, i.e. type</td>
</tr>
<tr>
<td>Analysis</td>
<td>Ex-ante</td>
</tr>
<tr>
<td>Time</td>
<td>Future</td>
</tr>
<tr>
<td>Alternatives</td>
<td>Possible</td>
</tr>
<tr>
<td>Language</td>
<td>Mental, non-textual, non-professional</td>
</tr>
<tr>
<td>Placing on Is and Ought</td>
<td>Is. But, the type of a situation appears on Ought</td>
</tr>
<tr>
<td>Web example</td>
<td>www.help.gv.at</td>
</tr>
<tr>
<td>Customary vs. statutory law</td>
<td>1) machine law, 2) customary law, 3) statutory law</td>
</tr>
<tr>
<td>Legal instruments</td>
<td>Roles, assumptions, rules governing the situation</td>
</tr>
<tr>
<td>Representation formalisms</td>
<td>Deontic logic worlds</td>
</tr>
<tr>
<td>Predicate logic</td>
<td></td>
</tr>
<tr>
<td>Teleology</td>
<td>Teleological relations</td>
</tr>
<tr>
<td>Bridging</td>
<td></td>
</tr>
</tbody>
</table>
Situation and Case

Notation
Situation ex ante

Goal

Challenge

Situation
Situative elements

a, b, c, d…n
Situative elements

Alternative

\[a \lor b \]
Entities of Sinnlandscape

(Sinnlandschaft)

Rules

Initial situation

Goal

Path

Legal texts
Case

ex post

Story-telling
Case

Story-telling

a, b, c, d...n

No italics (nicht kursiv).
Stand for concrete instances, not types
An instance

Story-telling

Factual term.
An instance
Subsumption

A, B, C legal terms

Factual term

Story-telling
Subsumption

A, B, C legal terms NORM N(A→B)

Factual term

Story-telling

a == A

14
Subsumption

Interpretation

Professional language

Factual term

Natural language

NORM N(A→B)
Subsumption 1: terminological

Subsumption 2: normative

Decision = Urteil, legal act = official version of the story

Natural language
Subsumption and syllogism

Norm(status = Obligatio, state_of_affairs = A(x), legal_consequence = B(x))

1) Minor premise: A(a)
 In other words, A(a) = true or instance-of(A,a) = true

2) Major premise: \(\forall x \ A(x) \rightarrow O \ B(x) \)
 syllogism

3) Conclusion: O B(a) – decision, judgment
On categorical syllogism

<table>
<thead>
<tr>
<th>1) Minor premise</th>
<th>All S are M.</th>
<th>All Greeks are humans.</th>
<th>S is M.</th>
<th>Socrates is human.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Major premise</td>
<td>All M are P.</td>
<td>All humans are mortal.</td>
<td>All M are P.</td>
<td>All humans are mortal.</td>
</tr>
<tr>
<td>3) Conclusion</td>
<td>All S are P.</td>
<td>All Greeks are mortal.</td>
<td>S is P.</td>
<td>Socrates is mortal.</td>
</tr>
</tbody>
</table>

Situation and case: attention and subsumption

Situation
- important
 - Attention
 - is_like
 - Cursor
 - changes
 - Position
 - Spatialisation
 - implies
 - Scene
 - Script (informal)
 - assigns
 - Roles
 - implies
 - Rivalry

Case
- compared
 - Relevance
 - important
 - Naming
 - Verbalisation

Subsumption
- means
 - Text of the case
 - under
 - § Norm
 - Term
An example problem: legal punishment
(see Bench-Capon & Prakken, COMMA 2006)

- A judge must determine the best way to punish \((pu)\) a criminal found guilty
- He has 3 actions:
 1. imprisonment \((pr)\),
 2. fine \((fi)\)
 3. community service \((cs)\)

- Besides punishment \((pu)\) there are three more goals:
 - deterring the general public \((de)\)
 - rehabilitating the offender \((re)\)
 - protecting society from crime \((pt)\)

- So \(pu\) will be the most important goal, but the method of punishment chosen \((pr, fi, or cs)\) will depend on other goals
Causal knowledge

1. **Imprisonment** \((pr)\) **promotes** both **deterrence** \((de)\) \([R4]\) and **protection of society** \((pt)\) \([R5]\), but **demotes** **rehabilitation** \((re)\) \([R6]\) of the offender.

2. **Fine** \((fi)\) **promotes** **deterrence** \((de)\) \([R7]\) but **has no effect** on **rehabilitation** \((re)\) or the **protection of society** \((pt)\) since the offender would remain free.

3. **Community service** \((cs)\) **promotes** **rehabilitation** \((re)\) \([R9]\) of the offender, but **demotes** **deterrence** \((de)\) \([R8]\) since this punishment is not feared.

Causal rules (between actions and goals):

\[
\begin{align*}
R1: & \quad pr \Rightarrow pu & R4: & \quad pr \Rightarrow de & R7: & \quad fi \Rightarrow de & R8: & \quad cs \Rightarrow \neg de \\
R2: & \quad fi \Rightarrow pu & R5: & \quad pr \Rightarrow pt & R6: & \quad pr \Rightarrow \neg re & R9: & \quad cs \Rightarrow re
\end{align*}
\]

3 actions:

- **imprisonment** \((pr)\)
- **fine** \((fi)\)
- **community service** \((cs)\)

4 goals:

- **protection of society** \((pt)\)
- **deterrence** \((de)\)
- **punishment** \((pu)\)
- **rehabilitation** \((re)\)
Values of goals

- Judge’s goal base $G = \{ pu, de, pt, re \}$ (more exactly, $G = \{ D\ pu, D\ de, D\ pt, D\ re \}$, where D is a modality; standing for desire)
 - A propositional modal logic is used
- All 4 goals cannot be achieved!
- Question: What is the best way to punish the offender?
- Answer: cs (see further)
 - Reason: first, $cs > pr$, second, $cs > fi$

<table>
<thead>
<tr>
<th>Value</th>
<th>(promoted, demoted)</th>
<th>Score</th>
<th>${ pu, de, pt, re }$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v(pr^+)$ =</td>
<td>${ pu, de, pt }, { re }$</td>
<td>3:1</td>
<td>(1, 1, 1, -1)</td>
</tr>
<tr>
<td>$v(fi^+)$ =</td>
<td>${ pu, de }, \emptyset$</td>
<td>2:0</td>
<td>(1, 1, 0, 0)</td>
</tr>
<tr>
<td>$v(cs^+)$ =</td>
<td>${ pu, re }, { de }$</td>
<td>2:1</td>
<td>(1, -1, 0, 1)</td>
</tr>
</tbody>
</table>
The attack graph

\[\text{Value} \quad \text{(promoted, demoted)} \quad \text{Value} \quad \text{(promoted, demoted)} \]

\[v(pr^+) = (\{pu, de, pt\}, \{re\}) \quad 3:1 \]
\[v(cs^+) = (\{pu, re\}, \{de\}) \quad 2:1 \]

\[re >^3 de + pt \]

More precisely, \(re - de >^3 de + pt - re \)

- Extralogical choice: \(re \) is next to \(pu \)
- Thus we (judge) make \(pu \) the second most important goal
- Other choices, e.g. pro fine \(fi^+ \) are possible

\[cs^+ \quad D cs \quad \text{Defeat:} >^3 \quad pr^+ \quad D pr \]

\[l_7 \quad l_8 \]

\[cs \Rightarrow pu \quad D pu \]
[cs \Rightarrow re \quad D re \]

\[pr \Rightarrow pu \quad D pu \]
[pr \Rightarrow de \quad D de \]
[pr \Rightarrow pt \quad D pt \]

\[R3 \quad R9 \quad R1 \quad R4 \quad R5 \]
Conclusions

• Distinct methods of legal informatics focus on situations and cases
Thank you