Pisot–Salem numbers, interlacing and \(\{0, 1\}\)-words

J. Jankauskas

MU Leoben

Numeration 2016
Prague
J. Jankauskas,
Binary words, winding numbers and polynomials with interlaced roots (submitted).
J. Jankauskas,
Binary words, winding numbers and polynomials with interlaced roots (submitted).
Pisot and Salem numbers

- **Pisot numbers**
 A real algebraic integer $\alpha > 1$ whose algebraic conjugates over \mathbb{Q} $\alpha' \neq \alpha$ satisfy $|\alpha'| < 1$.

- **Salem number:** a real algebraic integer $\alpha > 1$ whose conjugates $\alpha' \neq \alpha$ satisfy $|\alpha'| \leq 1$ with at least one conjugate being of modulus $|\alpha'| = 1$.
Pisot and Salem numbers

- **Pisot numbers**
 A real algebraic integer $\alpha > 1$ whose algebraic conjugates over \mathbb{Q} $\alpha' \neq \alpha$ satisfy $|\alpha'| < 1$.

- **Salem number:** a real algebraic integer $\alpha > 1$ whose conjugates $\alpha' \neq \alpha$ satisfy $|\alpha'| \leq 1$ with at least one conjugate being of modulus $|\alpha'| = 1$.
Pisot and Salem numbers

- **Pisot numbers**
 A real algebraic integer $\alpha > 1$ whose algebraic conjugates over \mathbb{Q} $\alpha' \neq \alpha$ satisfy $|\alpha'| < 1$.

- **Salem number**: a real algebraic integer $\alpha > 1$ whose conjugates $\alpha' \neq \alpha$ satisfy $|\alpha'| \leq 1$ with at least one conjugate being of modulus $|\alpha'| = 1$.
Pisot and Salem numbers

- **Pisot numbers**
 A real algebraic integer $\alpha > 1$ whose algebraic conjugates over \mathbb{Q} $\alpha' \neq \alpha$ satisfy $|\alpha'| < 1$.

- **Salem number**: a real algebraic integer $\alpha > 1$ whose conjugates $\alpha' \neq \alpha$ satisfy $|\alpha'| \leq 1$ with at least one conjugate being of modulus $|\alpha'| = 1$.
Examples

- **Siegel’s number:** Smallest Pisot number (proved such by Siegel in 1938):
 \[
 \theta = \frac{1}{6} \left(\sqrt[3]{108 + 12\sqrt{69}} + \sqrt[3]{108 - 12\sqrt{69}} \right) = 1.3247 \ldots ,
 \]
 with minimal polynomial:
 \[
 P(z) = z^3 - z - 1.
 \]

- **Lehmer’s number:** the positive root \(\mu = 1.17628 \ldots \) of
 \[
 L(z) = z^{10} + z^9 - z^7 - z^6 - z^5 - z^4 - z^3 + z + 1,
 \]
 discovered by Lehmer in 1933.
Figure: $z^3 - z - 1$
Figure: $L(z)$
Theorem 1 (Salem 1945)

Let $P(z)$ be a minimal polynomial of a Pisot number. Then, for every sufficiently large $n > n_0$, the roots of polynomials

$$Q(z) = z^n P(z) + P^*(z), \quad R(z) = z^n P(z) - P^*(z),$$

where $P^*(z) = z^{\deg P} P(1/z)$, are Salem numbers and (possibly) some roots of unity.

Example: take $P(z) = z^3 - z - 1$, $n = 8$. Then

$$R(z) = z^8(z^3 - z - 1) - (z^3 - z - 1)^* =$$

$$= z^{11} - z^9 - z^8 + z^3 + z^2 - 1 = (z - 1)L(z)$$
Theorem 1 (Salem 1945)

Let $P(z)$ be a minimal polynomial of a Pisot number. Then, for every sufficiently large $n > n_0$, the roots of polynomials

$$Q(z) = z^n P(z) + P^*(z), \quad R(z) = z^n P(z) - P^*(z),$$

where $P^*(z) = z^\deg P (1/z)$, are Salem numbers and (possibly) some roots of unity.

Example: take $P(z) = z^3 - z - 1$, $n = 8$. Then

$$R(z) = z^8(z^3 - z - 1) - (z^3 - z - 1)^* =$$

$$= z^{11} - z^9 - z^8 + z^3 + z^2 - 1 = (z - 1)L(z)$$
Theorem 1 (Salem 1945)

Let $P(z)$ be a minimal polynomial of a Pisot number. Then, for every sufficiently large $n > n_0$, the roots of polynomials

$$Q(z) = z^n P(z) + P^*(z), \quad R(z) = z^n P(z) - P^*(z),$$

where $P^*(z) = z^{\deg P} P(1/z)$, are Salem numbers and (possibly) some roots of unity.

Example: take $P(z) = z^3 - z - 1$, $n = 8$. Then

$$R(z) = z^8 (z^3 - z - 1) - (z^3 - z - 1)^* =$$

$$= z^{11} - z^9 - z^8 + z^3 + z^2 - 1 = (z - 1)L(z)$$
Theorem 1 (Salem 1945)

Let $P(z)$ be a minimal polynomial of a Pisot number. Then, for every sufficiently large $n > n_0$, the roots of polynomials

$$Q(z) = z^n P(z) + P^*(z), \quad R(z) = z^n P(z) - P^*(z),$$

where $P^*(z) = z^{\deg P} P(1/z)$, are Salem numbers and (possibly) some roots of unity.

Example: take $P(z) = z^3 - z - 1$, $n = 8$. Then

$$R(z) = z^8(z^3 - z - 1) - (z^3 - z - 1)^* =$$

$$= z^{11} - z^9 - z^8 + z^3 + z^2 - 1 = (z - 1)L(z)$$
Salem’s construction reversed

- **Theorem 2 (Boyd 1977)**

 Salem’s construction produces all possible Salem numbers.

 - **Boyd**: can we get all Pisot numbers back by Salem’s method?
 - **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.
 - **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.
 - **Solve back**:

 $$P(z) := \frac{Q(z) + R(z)}{2z^n}, \quad P^*(z) = \frac{Q(z) - R(z)}{2}.$$
 - **Question**: Is $P(z)$ Pisot?

- **Theorem 3 (Boyd 1977, Bertin, Boyd 1995)**

 YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace. Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Theorem 2 (Boyd 1977)

Salem’s construction produces all possible Salem numbers.

- **Boyd:** can we get all Pisot numbers back by Salem’s method?
- **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.
- **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.
- **Solve back:**
 \[
P(z) := \frac{(Q(z)+R(z))}{2z^n}, \quad P^*(z) = \frac{(Q(z)-R(z))}{2}.
\]
- **Question:** Is $P(z)$ Pisot?

Theorem 3 (Boyd 1977, Bertin, Boyd 1995)

YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace. Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Salem’s construction reversed

Theorem 2 (Boyd 1977)

Salem’s construction produces all possible Salem numbers.

- **Boyd**: can we get all Pisot numbers back by Salem’s method?

- **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.

- **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.

- **Solve back**:

 $$ P(z) := \frac{(Q(z)+R(z))}{2z^n}, \quad P^*(z) = \frac{(Q(z)-R(z))}{2}. $$

- **Question**: Is $P(z)$ Pisot?

Theorem 3 (Boyd 1977, Bertin, Boyd 1995)

YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace.

Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Salem’s construction reversed

- **Theorem 2 (Boyd 1977)**

 Salem’s construction produces all possible Salem numbers.

 - **Boyd**: can we get all Pisot numbers back by Salem’s method?
 - **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.
 - **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.
 - **Solve back**:

 $$P(z) := (Q(z) + R(z))/(2z^n), \quad P^*(z) = (Q(z) - R(z))/2.\)$$
 - **Question**: Is $P(z)$ Pisot?

- **Theorem 3 (Boyd 1977, Bertin, Boyd 1995)**

 YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace. Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Salem’s construction reversed

Theorem 2 (Boyd 1977)

Salem’s construction produces all possible Salem numbers.

- **Boyd**: can we get all Pisot numbers back by Salem’s method?
- **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.
- **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.
- **Solve back**:
 \[P(z) := \frac{(Q(z)+R(z))}{2z^n}, \quad P^*(z) = \frac{(Q(z)-R(z))}{2}. \]
- **Question**: Is $P(z)$ Pisot?

Theorem 3 (Boyd 1977, Bertin, Boyd 1995)

YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace.
Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Salem’s construction reversed

- **Theorem 2 (Boyd 1977)**

 Salem’s construction produces all possible Salem numbers.

 - **Boyd**: can we get all Pisot numbers back by Salem’s method?
 - **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.
 - **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.
 - **Solve back**:

 $$P(z) := (Q(z)+R(z))/(2z^n), \quad P^*(z) = (Q(z)-R(z))/2.$$
 - **Question**: Is $P(z)$ Pisot?

- **Theorem 3 (Boyd 1977, Bertin, Boyd 1995)**

 YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace. Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Salem’s construction reversed

- **Theorem 2 (Boyd 1977)**

 Salem’s construction produces all possible Salem numbers.

 - **Boyd**: can we get all Pisot numbers back by Salem’s method?
 - **Start** with Salem minimal polynomials $S(z)$ and $T(z)$.
 - **Multiply** by $z \pm 1$, $z^2 - 1$, z^k to get $Q(z)$ and $R(z)$.
 - **Solve back**:

 $$P(z) := (Q(z) + R(z)) / (2z^n), \quad P^*(z) = (Q(z) - R(z)) / 2.$$

 - **Question**: Is $P(z)$ Pisot?

- **Theorem 3 (Boyd 1977, Bertin, Boyd 1995)**

 YES if the unimodular roots of $Q(z)$ and $R(z)$ interlace.

 Moreover, for each Salem $S(z)$ there exists corresponding pair $Q(z)$ and $R(z)$ with interlaced roots.
Theorem 4 (McKee, Smyth, 2012)

Assume that unimodular roots of $Q(z)$, $R(z)$ are interlaced according to one of the 3 types:

- Cyclotomic-Cyclotomic (CC);
- Cyclotomic-Salem (CS);
- Salem-Salem (SS).

Then $P(z)$ obtained from $Q(z)$ and $R(z)$ by reversing the Salem’s construction is a Pisot polynomial. Moreover, all Pisot numbers can be obtained by using this constructions.

The proof is quite complicated (uses limit functions from quotients of graphs, Beukers-Heckman classification of finite reflection groups, earlier results of Boyd).
Theorem 4 (McKee, Smyth, 2012)

Assume that unimodular roots of $Q(z), R(z)$ are interlaced according to one of the 3 types:
- Cyclotomic-Cyclotomic (CC);
- Cyclotomic-Salem (CS);
- Salem-Salem (SS).

Then $P(z)$ obtained from $Q(z)$ and $R(z)$ by reversing the Salem’s construction is a Pisot polynomial. Moreover, all Pisot numbers can be obtained by using this constructions.

The proof is quite complicated (uses limit functions from quotients of graphs, Beukers-Heckman classification of finite reflection groups, earlier results of Boyd).
Theorem 4 (McKee, Smyth, 2012)

Assume that unimodular roots of $Q(z)$, $R(z)$ are interlaced according to one of the 3 types:

- Cyclotomic-Cyclotomic (CC);
- Cyclotomic-Salem (CS);
- Salem-Salem (SS).

Then $P(z)$ obtained from $Q(z)$ and $R(z)$ by reversing the Salem’s construction is a Pisot polynomial. Moreover, all Pisot numbers can be obtained by using this constructions.

The proof is quite complicated (uses limit functions from quotients of graphs, Beukers-Heckman classification of finite reflection groups, earlier results of Boyd).
Theorem 4 (McKee, Smyth, 2012)

Assume that unimodular roots of $Q(z), R(z)$ are interlaced according to one of the 3 types:

- Cyclotomic-Cyclotomic (CC);
- Cyclotomic-Salem (CS);
- Salem-Salem (SS).

Then $P(z)$ obtained from $Q(z)$ and $R(z)$ by reversing the Salem’s construction is a Pisot polynomial. Moreover, all Pisot numbers can be obtained by using this constructions.

The proof is quite complicated (uses limit functions from quotients of graphs, Beukers-Heckman classification of finite reflection groups, earlier results of Boyd).
Theorem 4 (McKee, Smyth, 2012)

Assume that unimodular roots of $Q(z)$, $R(z)$ are interlaced according to one of the 3 types:

- Cyclotomic-Cyclotomic (CC);
- Cyclotomic-Salem (CS);
- Salem-Salem (SS).

Then $P(z)$ obtained from $Q(z)$ and $R(z)$ by reversing the Salem’s construction is a Pisot polynomial. Moreover, all Pisot numbers can be obtained by using this constructions.

The proof is quite complicated (uses limit functions from quotients of graphs, Beukers-Heckman classification of finite reflection groups, earlier results of Boyd).
Theorem 4 (McKee, Smyth, 2012)

Assume that unimodular roots of $Q(z)$, $R(z)$ are interlaced according to one of the 3 types:

- Cyclotomic-Cyclotomic (CC);
- Cyclotomic-Salem (CS);
- Salem-Salem (SS).

Then $P(z)$ obtained from $Q(z)$ and $R(z)$ by reversing the Salem’s construction is a Pisot polynomial. Moreover, all Pisot numbers can be obtained by using this constructions.

The proof is quite complicated (uses limit functions from quotients of graphs, Beukers-Heckman classification of finite reflection groups, earlier results of Boyd).
Example: construction using CS pattern

- Let \(Q(z) = z^6 - z^4 - 2z^3 - z^2 + 1 \)
- Let \(R(z) = (z^2 - 1)(z^4 + 1) \).

Figure: CS-type pattern: black - roots of \(Q(z) \), grey - roots of \(R(z) \)
Reversing Salem’s construction:
\[P(z) := \frac{Q(z) + R(z)}{2z^3} = z^3 - z - 1. \]

Figure: \(P(z) \) produced by bad interlacing
Example: failed interlacing

- Let $Q(z) = z^{12} + 1$
- Let $R(z) = z(z^{12} - 1)/(z^2 + 1) = z(z^6 - 1)(z^4 - z^2 + 1)$.

Figure: Bad pattern: black - roots of $Q(z)$, grey - roots of $R(z)$
Bad example continued

- **Reversing Salem’s construction**

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

- **Failed interlacing**: roots of \(Q(z) \) and \(R(z) \) do not interlace according to \(CC \), \(CS \) or \(SS \) pattern – not interlaced near \(z = i \) and \(z = -i \).

- **Naive expectation**: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Reversing Salem’s construction

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

Failed interlacing: roots of \(Q(z) \) and \(R(z) \) do not interlace according to CC, CS or SS pattern – not interlaced near \(z = i \) and \(z = -i \).

Naive expectation: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Bad example continued

- Reversing Salem’s construction

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

- **Failed interlacing**: roots of \(Q(z) \) and \(R(z) \) do not interlace according to CC, CS or SS pattern – not interlaced near \(z = i \) and \(z = -i \).

- **Naive expectation**: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Bad example continued

- **Reversing Salem’s construction**

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

- **Failed interlacing**: roots of \(Q(z) \) and \(R(z) \) do not interlace according to \(CC \), \(CS \) or \(SS \) pattern – not interlaced near \(z = i \) and \(z = -i \).

- **Naive expectation**: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Reversing Salem’s construction

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

Failed interlacing: roots of \(Q(z) \) and \(R(z) \) do not interlace according to CC, CS or SS pattern – not interlaced near \(z = i \) and \(z = -i \).

Naive expectation: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Bad example continued

Reversing Salem’s construction

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

Failed interlacing: roots of \(Q(z) \) and \(R(z) \) do not interlace according to \(CC \), \(CS \) or \(SS \) pattern – not interlaced near \(z = i \) and \(z = -i \).

Naive expectation: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Bad example continued

- Reversing Salem’s construction

\[2P(z) = Q(z) + R(z) = z^{12} + z^{11} - z^9 + z^7 - z^5 + z^3 - z + 1 \]

- **Failed interlacing**: roots of \(Q(z) \) and \(R(z) \) do not interlace according to \(CC \), \(CS \) or \(SS \) pattern – not interlaced near \(z = i \) and \(z = -i \).

- **Naive expectation**: \(Z(P) = \deg(P) - 2 \) (say, a complex Pisot number).
Reality: $Z(P) = \deg P/2 = 6$): *skew-symmetric:* $P^*(-z) = P(z)$.

Question: Why this is so?

Root number: let $Z(P) = \#$ zeros of $P(z)$ with $|z| < 1$, counted with multiplicities.
Reality: $Z(P) = \deg P/2 = 6$: skew-symmetric: $P^*(-z) = P(z)$.

Question: Why this is so?

Root number: let $Z(P) = \#$ zeros of $P(z)$ with $|z| < 1$, counted with multiplicities.
Bad example

Reality: $Z(P) = \deg P/2 = 6$: skew-symmetric: $P^*(-z) = P(z)$.

Question: Why this is so?

Root number: let $Z(P) = \#$ zeros of $P(z)$ with $|z| < 1$, counted with multiplicities.
Binary words (basic topology)

- Binary words: \(w = w = w_1w_2 \ldots w_n \), where \(w_j \in \{0, 1\} \).
- Length: \(|w| = n \).
- Empty word \(w = \emptyset \) with \(|\emptyset| = 0 \)
- Concatenation: \(w = uv \), powers: \(w = v^m = \underbrace{v \ldots v}_m \), \(v^0 := \emptyset \)
- Inversion: \(w^{-1} = w_n \ldots w_1 \)
- Conjugation: \(\bar{w} = \bar{w}_1 \ldots \bar{w}_n \), where \(\bar{w}_j = 1 - w_j \).
- Properties: \((uv)w = u(vw) \), \(\bar{v} \bar{w} = \bar{v} \bar{w} \), \((vw)^{-1} = w^{-1}v^{-1} \), \(\bar{w}^{-1} = w^{-1} \).
Binary words (basic topology)

- Binary words: $w = w = w_1 w_2 \ldots w_n$, where $w_j \in \{0, 1\}$.
- Length: $|w| = n$.
- Empty word $w = \emptyset$ with $|\emptyset| = 0$
- Concatenation: $w = uv$, powers: $w = v^m = v \ldots v$

 $v^0 := \emptyset$
- Inversion: $w^{-1} = w_n \ldots w_1$
- Conjugation: $\overline{w} = \overline{w_1} \ldots \overline{w_n}$, where $\overline{w_j} = 1 - w_j$.
- Properties: $(uv)w = u(vw)$, $\overline{vw} = \overline{v} \overline{w}$, $\overline{(vw)^{-1}} = w^{-1}v^{-1}$, $\overline{w^{-1}} = w^{-1}$.
Binary words (basic topology)

- Binary words: $w = w_1 w_2 \ldots w_n$, where $w_j \in \{0, 1\}$.
- Length: $|w| = n$.
- Empty word $w = \emptyset$ with $|\emptyset| = 0$.
- Concatenation: $w = uv$, powers: $w = v^m = \underbrace{v \ldots v}_m$ times, $v^0 := \emptyset$.
- Inversion: $w^{-1} = w_n \ldots w_1$.
- Conjugation: $\overline{w} = \overline{w_1} \ldots \overline{w_n}$, where $\overline{w_j} = 1 - w_j$.
- Properties: $(uv)w = u(vw)$, $\overline{vw} = \overline{v} \overline{w}$, $(vw)^{-1} = w^{-1}v^{-1}$, $\overline{w^{-1}} = \overline{w}^{-1}$.
Binary words (basic topology)

- Binary words: $w = w = w_1 w_2 \ldots w_n$, where $w_j \in \{0, 1\}$.
- Length: $|w| = n$.
- Empty word $w = \emptyset$ with $|\emptyset| = 0$.
- Concatenation: $w = uv$, powers: $w = v^m = v \ldots v$.

 $v^0 := \emptyset$

- Inversion: $w^{-1} = w_n \ldots w_1$

- Conjugation: $\overline{w} = \overline{w_1} \ldots \overline{w_n}$, where $\overline{w_j} = 1 - w_j$.

- Properties: $(uv)w = u(vw)$, $\overline{vw} = \overline{v} \overline{w}$,

 $(vw)^{-1} = w^{-1} v^{-1}$, $\overline{w^{-1}} = w^{-1}$.
Binary words (basic topology)

- Binary words: $w = w = w_1w_2 \ldots w_n$, where $w_j \in \{0, 1\}$.
- Length: $|w| = n$.
- Empty word $w = \emptyset$ with $|\emptyset| = 0$
- Concatenation: $w = uv$, powers: $w = v^m = v \ldots v$, $v^0 := \emptyset$
- Inversion: $w^{-1} = w_n \ldots w_1$
- Conjugation: $\overline{w} = \overline{w}_1 \ldots \overline{w}_n$, where $\overline{w}_j = 1 - w_j$.
- Properties: $(uv)w = u(vw)$, $\overline{vw} = \overline{v} \overline{w}$, $(vw)^{-1} = w^{-1}v^{-1}$, $\overline{w}^{-1} = \overline{w}^{-1}$.
Binary words (basic topology)

- Binary words: $w = w = w_1 w_2 \ldots w_n$, where $w_j \in \{0, 1\}$.
- Length: $|w| = n$.
- Empty word $w = \emptyset$ with $|\emptyset| = 0$.
- Concatenation: $w = uv$, powers: $w = v^m = \underbrace{v \ldots v}_m$.

 $v^0 := \emptyset$

- Inversion: $w^{-1} = w_n \ldots w_1$

- Conjugation: $\overline{w} = \overline{w}_1 \ldots \overline{w}_n$, where $\overline{w}_j = 1 - w_j$.

- Properties: $(uv)w = u(vw)$, $\overline{vw} = \overline{v} \overline{w}$,

 $(vw)^{-1} = w^{-1}v^{-1}$, $\overline{w^{-1}} = w^{-1}$.
Binary words (basic topology)

- Binary words: $w = w = w_1 w_2 \ldots w_n$, where $w_j \in \{0, 1\}$.
- Length: $|w| = n$.
- Empty word $w = \emptyset$ with $|\emptyset| = 0$
- Concatenation: $w = uv$, powers: $w = v^m = v \ldots v$,

 $v^0 := \emptyset$
- Inversion: $w^{-1} = w_n \ldots w_1$
- Conjugation: $\overline{w} = \overline{w_1} \ldots \overline{w_n}$, where $\overline{w_j} = 1 - w_j$.
- Properties: $(uv)w = u(vw)$, $\overline{vw} = \overline{v} \overline{w}$,

 $(vw)^{-1} = w^{-1} v^{-1}$, $\overline{w}^{-1} = \overline{w}^{-1}$.
Binary words (basic topology)

• Binary words: \(w = w = w_1 w_2 \ldots w_n \), where \(w_j \in \{0, 1\} \).
• Length: \(|w| = n \).
• Empty word \(w = \emptyset \) with \(|\emptyset| = 0 \)
• Concatenation: \(w = u v \), powers: \(w = v^m = v \ldots v \), \(m \) times
 \(v^0 := \emptyset \)
• Inversion: \(w^{-1} = w_n \ldots w_1 \)
• Conjugation: \(\overline{w} = \overline{w_1} \ldots \overline{w_n} \), where \(\overline{w_j} = 1 - w_j \).
• Properties: \((uv)w = u(vw), \overline{vw} = \overline{v} \overline{w} \), \((vw)^{-1} = w^{-1}v^{-1} \), \(\overline{w}^{-1} = w^{-1} \).
Irreducible words

- Word w is irreducible \iff does not contain 00 or 11.
 Examples: $w = 0101$ or $w = \emptyset$.
- Reductions: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.
- Sequence of reductions:

 $$w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.$$

- Irreducible word w' obtained from w is called reduced form of w.
- One can think about irreducible words as quotient group of a free group on $\{0, 1\}$ under concatenation modulo the reduction map.
Irreducible words

- **Word** w is *irreducible* \iff does not contain 00 or 11.
 Examples: $w = 0101$ or $w = \emptyset$.

- Reductions: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.

- Sequence of reductions:

 $$w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.$$

- Irreducible word w' obtained from w is called *reduced form* of w.

- One can think about irreducible words as quotient group of a free group on $\{0, 1\}$ under concatenation modulo the reduction map.
Irreducible words

- **Word** w is *irreducible* if and only if it does not contain 00 or 11.
 Examples: $w = 0101$ or $w = \emptyset$.

- **Reductions**: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.

- **Sequence of reductions**:

 \[w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'. \]

- Irreducible word w' obtained from w is called *reduced form* of w.

- One can think about irreducible words as quotient group of a free group on $\{0, 1\}$ under concatenation modulo the reduction map.
Irreducible words

- Word w is irreducible \iff does not contain 00 or 11.

 Examples: $w = 0101$ or $w = \emptyset$.

- Reductions: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.

- Sequence of reductions:

 \[
 w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.
 \]

- Irreducible word w' obtained from w is called reduced form of w.

- One can think about irreducible words as quotient group of a free group on \{0, 1\} under concatenation modulo the reduction map.
Irreducible words

- Word \(w \) is \textit{irreducible} \iff \(\text{does not contain } 00 \text{ or } 11 \).
 \textit{Examples}: \(w = 0101 \) or \(w = \emptyset \).
- Reductions: \(00 \mapsto \emptyset, \ 11 \mapsto \emptyset \).
- Sequence of reductions:

\[
\begin{align*}
w &= 011010001 &\mapsto&\ 0010001 &\mapsto&\ 10001 &\mapsto&\ 101 &= w'.
\end{align*}
\]

- Irreducible word \(w' \) obtained from \(w \) is called \textit{reduced form} of \(w \).
- One can think about irreducible words as quotient group of a free group on \(\{0,1\} \) under concatenation modulo the reduction map.
Irreducible words

- Word w is irreducible \iff does not contain 00 or 11.

 Examples: $w = 0101$ or $w = \emptyset$.

- Reductions: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.

- Sequence of reductions:

 $w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'$.

- Irreducible word w' obtained from w is called *reduced form* of w.

- One can think about irreducible words as quotient group of a free group on \{0, 1\} under concatenation modulo the reduction map.
Irreducible words

• Word \(w \) is irreducible \(\iff \) does not contain 00 or 11.
 Examples: \(w = 0101 \) or \(w = \emptyset \).

• Reductions: 00 \(\mapsto \emptyset \), 11 \(\mapsto \emptyset \).

• Sequence of reductions:

\[
\begin{align*}
w &= 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.
\end{align*}
\]

• Irreducible word \(w' \) obtained from \(w \) is called reduced form of \(w \).

• One can think about irreducible words as quotient group of a free group on \(\{0,1\} \) under concatenation modulo the reduction map.
Irreducible words

- Word \(w \) is irreducible \iff\ does not contain 00 or 11.

 Examples: \(w = 0101 \) or \(w = \emptyset \).

- Reductions: \(00 \mapsto \emptyset \), \(11 \mapsto \emptyset \).

- Sequence of reductions:

 \[
 w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.
 \]

- Irreducible word \(w' \) obtained from \(w \) is called reduced form of \(w \).

- One can think about irreducible words as quotient group of a free group on \(\{0, 1\} \) under concatenation modulo the reduction map.
Irreducible words

• Word w is irreducible \iff does not contain 00 or 11.
 Examples: $w = 0101$ or $w = \emptyset$.

• Reductions: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.

• Sequence of reductions:

 $$w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.$$

• Irreducible word w' obtained from w is called reduced form of w.

• One can think about irreducible words as quotient group of a free group on \{0, 1\} under concatenation modulo the reduction map.
Irreducible words

- Word w is irreducible \iff does not contain 00 or 11.

 Examples: $w = 0101$ or $w = \emptyset$.

- Reductions: $00 \mapsto \emptyset$, $11 \mapsto \emptyset$.

- Sequence of reductions:

 $$w = 011010001 \mapsto 0010001 \mapsto 10001 \mapsto 101 = w'.$$

- Irreducible word w' obtained from w is called reduced form of w.

- One can think about irreducible words as quotient group of a free group on \{0, 1\} under concatenation modulo the reduction map.
Signed reduced length: for \(w = w_1 w_2 \ldots w_n \) of length \(|w| = n \), define

\[
l(w) = \sum_{j=1}^{\frac{|w|}{2}}(-1)^{j+w_j}.
\]

Theorem 5

Let \(w' \) be the reduced form of a binary word \(w \). Then \(w' \) is unique and the function \(l(w) \) measures the length of the reduced form: one has \(l(w) = l(w') \) and \(|l(w)| = |w'| \).

Basic idea: \(l(w) \) is invariant under the reductions.
Signed reduced length: for \(w = w_1w_2 \ldots w_n \) of length \(|w| = n\), define

\[
l(w) = \sum_{j=1}^{\lfloor|w|/2\rfloor} (-1)^j w_j.
\]

Theorem 5

Let \(w' \) be the reduced form of a binary word \(w \). Then \(w' \) is unique and the function \(l(w) \) measures the length of the reduced form: one has \(l(w) = l(w') \) and \(|l(w)| = |w'|\).

Basic idea: \(l(w) \) is invariant under the reductions.
Reduced length formula

- **Signed reduced length**: for \(w = w_1 w_2 \ldots w_n \) of length \(|w| = n \), define

\[
l(w) = \sum_{j=1}^{\frac{|w|}{2}} (-1)^{j+w_j}.
\]

- **Theorem 5**

Let \(w' \) be the reduced form of a binary word \(w \). Then \(w' \) is unique and the function \(l(w) \) measures the length of the reduced form: one has \(l(w) = l(w') \) and \(|l(w)| = |w'| \).

- Basic idea: \(l(w) \) is invariant under the reductions.
Let \(v, w \) be finite binary words on 0, 1. Then:

a) \(|w| \geq l(w)|.

b) if \(w \) can be obtained from \(v \) by reductions, then

\[
|v| \equiv |w| \equiv l(v) \equiv l(w) \pmod{2}
\]

and \(l(v) = l(w) \).

c) \(l(\overline{w}) = -l(w) \)

d) \(l(vw) = l(v) + (-1)^{|v|}l(w) \).

e) \(l(w^{-1}) = (-1)^{|w|+1}l(w) \).

f) \(l(ww^{-1}) = l(\emptyset) = 0 \).
Let v, w be finite binary words on 0, 1. Then:

a) $|w| \geq l(w)$.

b) if w can be obtained from v by reductions, then

$$|v| \equiv |w| \equiv l(v) \equiv l(w) \quad (\text{mod } 2)$$

and $l(v) = l(w)$.

c) $l(\overline{w}) = -l(w)$

d) $l(vw) = l(v) + (-1)^{|v|}l(w)$.

e) $l(w^{-1}) = (-1)^{|w|+1}l(w)$.

f) $l(ww^{-1}) = l(\emptyset) = 0.$
Elementary properties of $l(w)$

Let v, w be finite binary words on 0, 1. Then:

a) $|w| \geq l(w)$.

b) if w can be obtained from v by reductions, then

$$|v| \equiv |w| \equiv l(v) \equiv l(w) \pmod{2}$$

and $l(v) = l(w)$.

c) $l(\overline{w}) = -l(w)$

d) $l(vw) = l(v) + (-1)^{|v|} l(w)$.

e) $l(w^{-1}) = (-1)^{|w|+1} l(w)$.

f) $l(ww^{-1}) = l(\emptyset) = 0$.
g) \[l(ww^{-1}) = \begin{cases} (-1)^{|w|}l(v), & \text{if } |v| \text{ is even,} \\ 2l(w) + (-1)^{|w|}l(v), & \text{if } |v| \text{ is odd.} \end{cases} \]

h) Suppose that \(w \) is a cyclic shift (the rotation) of \(v \) by \(k \) positions. If \(|v| \) is even, then \(l(w) = (-1)^k l(v) \).
g) \[l(wvw^{-1}) = \begin{cases} (-1)^{|w|}l(v), & \text{if } |v| \text{ is even}, \\ 2l(w) + (-1)^{|w|}l(v), & \text{if } |v| \text{ is odd}. \end{cases} \]

h) Suppose that \(w \) is a cyclic shift (the rotation) of \(v \) by \(k \) positions. If \(|v| \) is even, then \(l(w) = (-1)^k l(v) \).
Main Results: Counting zeros and poles

Theorem 6
Let $D \subset \mathbb{C}$ be a simply connected domain whose boundary ∂D is a Jordan curve. Assume that a meromorphic function $F : \overline{D} \to \mathbb{C}$ is holomorphic and $\neq 0$ on ∂D with $\Re F$ and $\Im F$ vanishing at most at finitely many points of ∂D. Then

$$\# \text{Zeros}_D(F) - \# \text{Poles}_D(F) = \frac{1}{4} \cdot \varepsilon \cdot I(w),$$

where w is a binary word on $\{0, 1\}$, with 1's representing the sign change points of $\Re F$ and 0's representing the sign change points of $\Im F$ on ∂D in a positive direction. The $\varepsilon = \pm 1$ denotes the sign of $\Re F \cdot \Im F$ on the boundary ∂D right before the first sign change recorded in w occurs.
Main Results: Counting zeros and poles

Theorem 6

Let $\mathcal{D} \subset \mathbb{C}$ be a simply connected domain whose boundary $\partial \mathcal{D}$ is a Jordan curve. Assume that a meromorphic function $F : \overline{\mathcal{D}} \to \mathbb{C}$ is holomorphic and $\neq 0$ on $\partial \mathcal{D}$ with $\Re F$ and $\Im F$ vanishing at most at finitely many points of $\partial \mathcal{D}$. Then

$$\# \text{Zeros}_D(F) - \# \text{Poles}_D(F) = \frac{1}{4} \cdot \varepsilon \cdot l(w),$$

where w is a binary word on $\{0, 1\}$, with 1’s representing the sign change points of $\Re F$ and 0’s representing the sign change points of $\Im F$ on $\partial \mathcal{D}$ in a positive direction. The $\varepsilon = \pm 1$ denotes the sign of $\Re F \cdot \Im F$ on the boundary $\partial \mathcal{D}$ right before the first sign change recorded in w occurs.
Theorem 7
Let $P(z) \in \mathbb{C}[z]$ be of degree d. Suppose that $P(z) \neq \pm P^*(z)$ and that $P(z) \neq 0$ for any z of modulus $|z| = 1$. Set

$$Q(z) = P(z) + P^*(z), \quad R(z) = P(z) - P^*(z).$$

Then

$$\#\text{Zeros}_\mathbb{D}(P) = \frac{d}{2} + \frac{\varepsilon \cdot l(w)}{4}, \quad Z_\mathbb{D}(P^*) = \frac{d}{2} - \frac{\varepsilon \cdot l(w)}{4},$$

and

$$\#\text{Zeros}_\mathbb{D}(P) - \#\text{Zeros}_\mathbb{D}(P^*) = \frac{\varepsilon \cdot l(w)}{2},$$

where w represents the interlacing pattern of the unimodular zeros of polynomials $Q(z)$ and $R(z)$ odd multiplicities in positive direction.
Polynomials on the unit circle, II

Theorem 8

The number ε in Theorem 7 is defined by

$$
\varepsilon := \text{sgn} \frac{Q(z)R(z)}{iz^d} = \text{sgn} \frac{P^2(z) - P^*2(z)}{iz^d},
$$

on the unit circle $|z| = 1$ just before the first zero in w. If $R(z)$ vanishes at $z = 1$ with multiplicity $m = 2k + 1$, then the initial sign in Theorem 7 just above the point $z = 1$ is

$$
\varepsilon = (-1)^k \text{sgn} P(1) \frac{\partial^m}{\partial z} R(1).
$$

If $m = 1$, then

$$
\varepsilon = \text{sgn} \left(\frac{P'(1)}{P(1)} - \frac{d}{2} \right).
$$
Theorem 9

Let $P(z) \in \mathbb{R}[z]$ be of degree $d \geq 1$. $P(z)$ has $Z_D(P) = d - 1$ roots of modulus $|z| < 1$ and $Z_D(P^*) = 1$ root of modulus $|z| > 1$, iff the odd-multiplicity roots of $Q(z) = P(z) + P^*(z)$ and $R(z) = P(z) - P^*(z)$ interlace according to one of the patterns:

<table>
<thead>
<tr>
<th>d</th>
<th>d</th>
<th>Sign ε</th>
<th>Pattern</th>
<th># of 1’s</th>
<th># of 0’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>odd</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>even</td>
<td>-1 or 1</td>
<td>00</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>≥ 3</td>
<td>either</td>
<td>1</td>
<td>$(10)^{d-3}10$</td>
<td>$d - 2$</td>
<td>$d - 2$</td>
</tr>
<tr>
<td></td>
<td>either</td>
<td>-1</td>
<td>$(01)^{d-2}00$</td>
<td>$d - 2$</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>even</td>
<td>1</td>
<td>$(10)^{d/2-1}0(01)^{d/2-1}0$</td>
<td>$d - 2$</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>odd</td>
<td>1</td>
<td>$(10)^{(d-3)/2}1^3(01)^{(d-3)/2}0$</td>
<td>d</td>
<td>$d - 2$</td>
</tr>
</tbody>
</table>

Here 1’s represent roots of $Q(z)$, 0’s – roots of $R(z)$, written counterclockwise starting after $z = 1$.
Further Research

- Classification of interlacing patterns that produce complex Pisot numbers.
- Complex Pisot numbers from pairs of cyclotomic polynomials.
- Look for extensions of Beukers-Heckman result on finite reflection groups.
Further Research

- Classification of interlacing patterns that produce complex Pisot numbers.
- Complex Pisot numbers from pairs of cyclotomic polynomials.
- Look for extensions of Beukers-Heckman result on finite reflection groups.
Further Research

- Classification of interlacing patterns that produce complex Pisot numbers.
- Complex Pisot numbers from pairs of cyclotomic polynomials.
- Look for extensions of Beukers-Heckman result on finite reflection groups.
Further Research

- Classification of interlacing patterns that produce complex Pisot numbers.
- Complex Pisot numbers from pairs of cyclotomic polynomials.
- Look for extensions of Beukers-Heckman result on finite reflection groups.
The End

Thank you!
Thank you!