Littlewood polynomials with prescribed number of zeros inside the unit disk

P. Borwein1, S. Choi1, R. Ferguson1 and J. Jankauskas2

1Simon Fraser University,
2Waterloo university

CMS Summer Meeting, Winnipeg, June 6–9, 2014
Definitions

▶ **Littlewood polynomials:**

\[p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \]

where \(a_j \in \{-1, 1\}, 0 \leq j \leq n. \)

▶ **Inversion:**

\[p^*(z) := z^{\deg p} p(1/z) \]

for any \(p(z) \in \mathbb{R}[z]. \)

▶ **Self-reciprocal polynomials:** \(p^*(z) = \pm p(z). \)

▶ **Skew-symmetric polynomials:** If \(p^*(z) = \pm p(-z). \)
Definitions

- **Littlewood polynomials:**

 \[p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \]

 where \(a_j \in \{-1, 1\}, \ 0 \leq j \leq n. \)

- **Inversion:**

 \[p^*(z) := z^{\deg p} p(1/z) \]

 for any \(p(z) \in \mathbb{R}[z]. \)

- **Self-reciprocal polynomials:** \(p^*(z) = \pm p(z). \)

- **Skew-symmetric polynomials:** If \(p^*(z) = \pm p(-z). \)
Definitions

- **Littlewood polynomials:**

 \[p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \]

 where \(a_j \in \{-1, 1\}, \ 0 \leq j \leq n. \)

- **Inversion:**

 \[p^*(z) := z^{\deg p} p(1/z) \]

 for any \(p(z) \in \mathbb{R}[z]. \)

- **Self-reciprocal polynomials:** \(p^*(z) = \pm p(z). \)

- **Skew-symmetric polynomials:** \(p^*(z) = \pm p(-z). \)
Definitions

- **Littlewood polynomials:**
 \[p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \]
 where \(a_j \in \{-1, 1\}, \ 0 \leq j \leq n. \)

- **Inversion:**
 \[p^*(z) := z^{\deg p} p(1/z) \]
 for any \(p(z) \in \mathbb{R}[z]. \)

- **Self-reciprocal polynomials:** \(p^*(z) = \pm p(z). \)

- **Skew-symmetric polynomials:** \(p^*(z) = \pm p(-z). \)
Definitions

- **Littlewood polynomials:**
 \[p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \]
 where \(a_j \in \{-1, 1\}, 0 \leq j \leq n. \)

- **Inversion:**
 \[p^*(z) := z^{\deg p} p(1/z) \]
 for any \(p(z) \in \mathbb{R}[z]. \)

- **Self-reciprocal polynomials:** \(p^*(z) = \pm p(z). \)

- **Skew-symmetric polynomials:** If \(p^*(z) = \pm p(-z). \)
Littlewood polynomials:

\[p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0, \]

where \(a_j \in \{-1, 1\}, \ 0 \leq j \leq n. \)

Inversion:

\[p^*(z) := z^{\deg p} p(1/z) \]

for any \(p(z) \in \mathbb{R}[z]. \)

Self-reciprocal polynomials: \(p^*(z) = \pm p(z). \)

Skew-symmetric polynomials: If \(p^*(z) = \pm p(-z). \)
Definitions

- Open unit disk: $D = \{ z \in \mathbb{C} : |z| < 1 \}$
- Let $N(p)$ denote the number of roots of $p(z)$ in D (counted with multiplicities).
- Let $U(p)$ denote the number of roots of $p(z)$ in ∂D (counted with multiplicities). Such roots are called *unimodular*.
Open unit disk: \(D = \{ z \in \mathbb{C} : |z| < 1 \} \)

Let \(N(p) \) denote \# of roots of \(p(z) \) in \(D \) (counted with multiplicities).

Let \(U(p) \) denote \# of roots of \(p(z) \) in \(\partial D \) (counted with multiplicities). Such roots are called *unimodular*.
Definitions

- Open unit disk: \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \)
- Let \(N(p) \) denote \# of roots of \(p(z) \) in \(\mathbb{D} \) (counted with multiplicities).
- Let \(U(p) \) denote \# of roots of \(p(z) \) in \(\partial \mathbb{D} \) (counted with multiplicities). Such roots are called unimodular.
Definitions

- Open unit disk: $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$
- Let $N(p)$ denote # of roots of $p(z)$ in \mathbb{D} (counted with multiplicities).
- Let $U(p)$ denote # of roots of $p(z)$ in $\partial \mathbb{D}$ (counted with multiplicities). Such roots are called unimodular.
Problem 1: Let \((n, k)\) be a pair of integers such that
\[1 \leq k \leq n - 1.\] For such a pair, does there always exist a
Littlewood polynomial \(p(z)\) of degree \(n\) with precisely \(k\) roots inside the unit disk and no unimodular roots, that
is, \(N(p) = k, \ U(p) = 0\)?

Problem 2: Suppose that \(p(z)\) is a Littlewood
polynomial of degree \(n\). If the sign of the coefficient of
the term \(z^k\), where \(0 \leq k \leq n\), is changed, how the
numbers \(N(p)\) and \(U(p)\) change?
Problems

- **Problem 1:** Let (n, k) be a pair of integers such that $1 \leq k \leq n - 1$. For such a pair, does there always exist a Littlewood polynomial $p(z)$ of degree n with precisely k roots inside the unit disk and no unimodular roots, that is, $N(p) = k$, $U(p) = 0$?

- **Problem 2:** Suppose that $p(z)$ is a Littlewood polynomial of degree n. If the sign of the coefficient of the term z^k, where $0 \leq k \leq n$, is changed, how the numbers $N(p)$ and $U(p)$ change?
Problems

Problem 1: Let \((n, k)\) be a pair of integers such that \(1 \leq k \leq n - 1\). For such a pair, does there always exist a Littlewood polynomial \(p(z)\) of degree \(n\) with precisely \(k\) roots inside the unit disk and no unimodular roots, that is, \(N(p) = k, U(p) = 0\)?

Problem 2: Suppose that \(p(z)\) is a Littlewood polynomial of degree \(n\). If the sign of the coefficient of the term \(z^k\), where \(0 \leq k \leq n\), is changed, how the numbers \(N(p)\) and \(U(p)\) change?
Motivation: Littlewood’s problem from 1960’s

Take \(z := e^{it}, \ t \in [0, 2\pi) \) and consider the real part of \(p(e^{it}) \), the trigonometric polynomial

\[
T(t) = \Re \left(\sum_{j=1}^{n} a_j e^{jt} \right) = \sum_{j=1}^{n} a_j \cos(jt).
\]

Question: What is the lower bound on the number of real zeros in the period \([0, 2\pi)\) of \(T(t) \)?

Usually, such \(T(t) \) oscillate a lot. Thus, one may expect lots of zeros.
Motivation: Littlewood’s problem from 1960’s

- Take \(z := e^{it}, \ t \in [0, 2\pi) \) and consider the real part of \(p(e^{it}) \), the trigonometric polynomial

\[
T(t) = \Re \left(\sum_{j=1}^{n} a_j e^{jt} \right) = \sum_{j=1}^{n} a_j \cos(jt).
\]

- **Question:** What is the lower bound on the number of real zeros in the period \([0, 2\pi)\) of \(T(t) \)?

- Usually, such \(T(t) \) oscillate a lot. Thus, one may expect lots of zeros.
Motivation: Littlewood’s problem from 1960’s

- Take \(z := e^{it}, \ t \in [0, 2\pi) \) and consider the real part of \(p(e^{it}) \), the trigonometric polynomial

\[
T(t) = \Re \left(\sum_{j=1}^{n} a_j e^{j t} \right) = \sum_{j=1}^{n} a_j \cos(jt).
\]

- **Question:** What is the lower bound on the number of real zeros in the period \([0, 2\pi)\) of \(T(t) \)?

- Usually, such \(T(t) \) oscillate a lot. Thus, one may expect lots of zeros.
Motivation: Littlewood’s problem from 1960’s

Take $z := e^{it}$, $t \in [0, 2\pi)$ and consider the real part of $p(e^{it})$, the trigonometric polynomial

$$T(t) = \Re \left(\sum_{j=1}^{n} a_j e^{ijt} \right) = \sum_{j=1}^{n} a_j \cos(jt).$$

Question: What is the lower bound on the number of real zeros in the period $[0, 2\pi)$ of $T(t)$?

Usually, such $T(t)$ oscillate a lot. Thus, one may expect lots of zeros.
Motivation: Littlewood’s problem from 1960’s

Take $z := e^{it}$, $t \in [0, 2\pi)$ and consider the real part of $p(e^{it})$, the trigonometric polynomial

$$T(t) = \mathcal{R} \left(\sum_{j=1}^{n} a_j e^{jt} \right) = \sum_{j=1}^{n} a_j \cos(jt).$$

Question: What is the lower bound on the number of real zeros in the period $[0, 2\pi)$ of $T(t)$?

Answer: Usually, such $T(t)$ oscillate a lot. Thus, one may expect lots of zeros.
Motivation: Littlewood’s problem from 1960’s

- Take $z := e^{it}$, $t \in [0, 2\pi)$ and consider the real part of $p(e^{it})$, the trigonometric polynomial

$$T(t) = \Re \left(\sum_{j=1}^{n} a_j e^{jt} \right) = \sum_{j=1}^{n} a_j \cos (jt).$$

Question: What is the lower bound on the number of real zeros in the period $[0, 2\pi)$ of $T(t)$?

- Usually, such $T(t)$ oscillate a lot. Thus, one may expect lots of zeros.
Motivation

- **P. Borwein, T. Erdélyi (2007):** If $A \subset \mathbb{R}$ non-empty and finite, then, for any sequence $(a_j)_{j=1}^{\infty} \in A^\mathbb{N}$ that is not eventually zero, # of zeros of $T_n(t) = \sum_{j=1}^{n} a_j \cos(jt)$ in the period $\to \infty$ as $n \to \infty$.

- **Conjecture:** Probably, # of zeros of $T(t)$ in $[0, 2\pi)$ goes $\to \infty$ together with the degree of $T(t)$ regardless if we select the coefficients from a fixed sequence or not.

- What it has to do with the initial problem on zeros of $p(z)$ in \mathbb{D}?

- By argument principle, if $N(p) = k$, then # of zeros of $T(t)$ in $[0, 2\pi)$ is at least $2k$.

- Possible counterexamples to this conjecture might arise only from $p(z)$ with few zeros in \mathbb{D}!
Motivation

▶ P. Borwein, T. Erdélyi (2007): If \(A \subset \mathbb{R} \) non-empty and finite, then, for any sequence \((a_j)_{j=1}^{\infty} \in A^\mathbb{N}\) that is not eventually zero, \# of zeros of \(T_n(t) = \sum_{j=1}^{n} a_j \cos(jt) \) in the period \(\to \infty \) as \(n \to \infty \).

▶ Conjecture: Probably, \# of zeros of \(T(t) \) in \([0, 2\pi]\) goes \(\to \infty \) together with the degree of \(T(t) \) regardless if we select the coefficients from a fixed sequence or not.

▶ What it has to do with the initial problem on zeros of \(p(z) \) in \(\mathbb{D} \)?

▶ By argument principle, if \(N(p) = k \), then \# of zeros of \(T(t) \) in \([0, 2\pi]\) is at least \(2k \).

▶ Possible counterexamples to this conjecture might arise only from \(p(z) \) with few zeros in \(\mathbb{D} \)!
Motivation

- **P. Borwein, T. Erdélyi (2007):** If $A \subset \mathbb{R}$ non-empty and finite, then, for any sequence $(a_j)_{j=1}^\infty \in A^\mathbb{N}$ that is not eventually zero, the number of zeros of $T_n(t) = \sum_{j=1}^n a_j \cos(jt)$ in the period $\to \infty$ as $n \to \infty$.

- **Conjecture:** Probably, the number of zeros of $T(t)$ in $[0, 2\pi)$ goes to ∞ together with the degree of $T(t)$ regardless if we select the coefficients from a fixed sequence or not.

- What it has to do with the initial problem on zeros of $p(z)$ in \mathbb{D}?

- By *argument principle*, if $N(p) = k$, then the number of zeros of $T(t)$ in $[0, 2\pi)$ is at least $2k$.

- Possible counterexamples to this conjecture might arise only from $p(z)$ with few zeros in \mathbb{D}!
Motivation

- **P. Borwein, T. Erdélyi (2007):** If $A \subset \mathbb{R}$ non-empty and finite, then, for any sequence $(a_j)_{j=1}^{\infty} \in A^\mathbb{N}$ that is not eventually zero, \# of zeros of $T_n(t) = \sum_{j=1}^{n} a_j \cos(jt)$ in the period $\to \infty$ as $n \to \infty$.

- **Conjecture:** Probably, \# of zeros of $T(t)$ in $[0, 2\pi)$ goes $\to \infty$ together with the degree of $T(t)$ regardless if we select the coefficients from a fixed sequence or not.

- **What it has to do with the initial problem on zeros of $p(z)$ in \mathbb{D}?**
 - By argument principle, if $N(p) = k$, then \# of zeros of $T(t)$ in $[0, 2\pi)$ is at least $2k$.
 - **Possible counterexamples** to this conjecture might arise only from $p(z)$ with few zeros in \mathbb{D}!
P. Borwein, T. Erdélyi (2007): If $A \subset \mathbb{R}$ non-empty and finite, then, for any sequence $(a_j)_{j=1}^{\infty} \in A^\mathbb{N}$ that is not eventually zero, the number of zeros of $T_n(t) = \sum_{j=1}^{n} a_j \cos(jt)$ in the period $\to \infty$ as $n \to \infty$.

Conjecture: Probably, the number of zeros of $T(t)$ in $[0, 2\pi)$ goes to ∞ together with the degree of $T(t)$ regardless if we select the coefficients from a fixed sequence or not.

What it has to do with the initial problem on zeros of $p(z)$ in \mathbb{D}?

By argument principle, if $N(p) = k$, then the number of zeros of $T(t)$ in $[0, 2\pi)$ is at least $2k$.

Possible counterexamples to this conjecture might arise only from $p(z)$ with few zeros in \mathbb{D}!
Motivation

▶ P. Borwein, T. Erdélyi (2007): If $A \subset \mathbb{R}$ non-empty and finite, then, for any sequence $(a_j)_{j=1}^{\infty} \in A^\mathbb{N}$ that is not eventually zero, \# of zeros of $T_n(t) = \sum_{j=1}^{n} a_j \cos(jt)$ in the period $\to \infty$ as $n \to \infty$.

▶ Conjecture: Probably, \# of zeros of $T(t)$ in $[0, 2\pi)$ goes $\to \infty$ together with the degree of $T(t)$ regardless if we select the coefficients from a fixed sequence or not.

▶ What it has to do with the initial problem on zeros of $p(z)$ in \mathbb{D}?

▶ By *argument principle*, if $N(p) = k$, then \# of zeros of $T(t)$ in $[0, 2\pi)$ is at least $2k$.

▶ Possible counterexamples to this conjecture might arise only from $p(z)$ with few zeros in \mathbb{D}!
Motivation and Related results

- **P. Borwein, S. Choi (1999), S. Akhtari, S. Choi (2008):** In case $N(p) = 0$, $p(z)$ must be a product of cyclotomic polynomials; there is a formula that describes all these polynomials.

- **K. Mukunda (2006):** In case $N(p) = 1$ and $N(p) = n - 1$, Littlewood polynomials $p(z)$ and $p^*(z)$ are related to Pisot polynomials. Up to the change of sign, inversion and negation, all such polynomials arise from

 \[p(z) = z^n - z^{n-1} - \cdots - z - 1. \]

- **I. Mercer (2006):** Skew symmetric Littlewood polynomials of even degree have no unimodular zeros. For such polynomials, $U(p) = 0$ and $N(p) = n/2$.
Motivation and Related results

- **P. Borwein, S. Choi (1999), S. Akhtari, S. Choi (2008):** In case $N(p) = 0$, $p(z)$ must be a product of cyclotomic polynomials; there is a formula that describes all these polynomials.

- **K. Mukunda (2006):** In case $N(p) = 1$ and $N(p) = n - 1$, Littlewood polynomials $p(z)$ and $p^*(z)$ are related to Pisot polynomials. Up to the change of sign, inversion and negation, all such polynomials arise from

 \[p(z) = z^n - z^{n-1} - \cdots - z - 1. \]

- **I. Mercer (2006):** Skew symmetric Littlewood polynomials of even degree have no unimodular zeros. For such polynomials, $U(p) = 0$ and $N(p) = n/2$.
Motivation and Related results

- **P. Borwein, S. Choi (1999), S. Akhtari, S. Choi (2008):** In case $N(p) = 0$, $p(z)$ must be a product of cyclotomic polynomials; there is a formula that describes all these polynomials.

- **K. Mukunda (2006):** In case $N(p) = 1$ and $N(p) = n - 1$, Littlewood polynomials $p(z)$ and $p^*(z)$ are related to Pisot polynomials. Up to the change of sign, inversion and negation, all such polynomials arise from
 \[p(z) = z^n - z^{n-1} - \cdots - z - 1. \]

- **I. Mercer (2006):** Skew symmetric Littlewood polynomials of even degree have no unimodular zeros. For such polynomials, $U(p) = 0$ and $N(p) = n/2$.
Motivation and Related results

- **P. Borwein, S. Choi (1999), S. Akhtari, S. Choi (2008):** In case $N(p) = 0$, $p(z)$ must be a product of cyclotomic polynomials; there is a formula that describes all these polynomials.

- **K. Mukunda (2006):** In case $N(p) = 1$ and $N(p) = n - 1$, Littlewood polynomials $p(z)$ and $p^*(z)$ are related to Pisot polynomials. Up to the change of sign, inversion and negation, all such polynomials arise from

 \[p(z) = z^n - z^{n-1} - \cdots - z - 1. \]

- **I. Mercer (2006):** Skew symmetric Littlewood polynomials of even degree have no unimodular zeros. For such polynomials, $U(p) = 0$ and $N(p) = n/2$
Conrey, Granville, Poonen, Soundararajan (2000): For Fekete polynomials \(p_n(z) = \sum_{j=0}^{n-1} \left(\frac{j}{n} \right) z^j \), where \(n \) is a prime and \(\left(\frac{j}{n} \right) \) is the Legendre symbol, one has \(U(p_n) \sim \kappa_0 n \) as \(n \to \infty \) with some constant \(0.500668 < \kappa_0 < 0.500813 \).
Conrey, Granville, Poonen, Soundararajan (2000):

For Fekete polynomials $p_n(z) = \sum_{j=0}^{n-1} \left(\frac{j}{n} \right) z^j$, where n is a prime and $\left(\frac{j}{n} \right)$ is the Legendre symbol, one has $U(p_n) \sim \kappa_0 n$ as $n \to \infty$ with some constant $0.500668 < \kappa_0 < 0.500813$.
Main difficulties …

- We do not yet understand the relation between the patterns of the coefficients of $p(z)$ and numbers $N(p)$, $U(p)$.
- Very few classes of Littlewood polynomials $N(p)$ with the exact number $N(p)$ are known!
- The big part of the problem: there is no simple formula for the $N(p)$!
Main difficulties ...

- We do not yet understand the relation between the patterns of the coefficients of $p(z)$ and numbers $N(p), U(p)$.
- Very few classes of Littlewood polynomials $N(p)$ with the exact number $N(p)$ are known!
- **The big part of the problem:** there is no simple formula for the $N(p)$!
Main difficulties …

- We do not yet understand the relation between the patterns of the coefficients of $p(z)$ and numbers $N(p)$, $U(p)$.

- Very few classes of Littlewood polynomials $N(p)$ with the exact number $N(p)$ are known!

- The big part of the problem: there is no simple formula for the $N(p)$!
Main difficulties …

- We do not yet understand the relation between the patterns of the coefficients of $p(z)$ and numbers $N(p)$, $U(p)$.
- Very few classes of Littlewood polynomials $N(p)$ with the exact number $N(p)$ are known!
- **The big part of the problem:** there is no simple formula for the $N(p)$!
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some + with −.

(M. Mossinghoff, C. Pinner, J. Vaaler (2008)).

- Apply Boyd’s formula (1977):

1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z) \), \(\varepsilon \in \{-1, 1\} \);
2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z), t \in [0, 1] \), by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z) q'(z) \) at the unimodular roots of \(q(z) \);
3) use \(N(p) = N(q) + E(p, q) \).
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some + with −.
(M. Mossinghoff, C. Pinner, J. Vaaler (2008)).

- Apply Boyd’s formula (1977):
 1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z) \), \(\varepsilon \in \{-1, 1\} \);
 2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z) \), \(t \in [0, 1] \), by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z)q'(z) \) at the unimodular roots of \(q(z) \);
 3) use \(N(p) = N(q) + E(p, q) \).
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some + with −.

(M. Mossinghoff, C. Pinner, J. Vaaler (2008))

- Apply Boyd’s formula (1977):
 1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z) \), \(\varepsilon \in \{-1, 1\} \);
 2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z), t \in [0, 1] \), by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z)q'(z) \) at the unimodular roots of \(q(z) \);
 3) use \(N(p) = N(q) + E(p, q) \).
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some + with −.

(M. Mossinghoff, C. Pinner, J. Vaaler (2008)).

- Apply Boyd’s formula (1977):
 1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z) \), \(\varepsilon \in \{-1, 1\} \);
 2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z) \), \(t \in [0, 1] \), by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z) q'(z) \) at the unimodular roots of \(q(z) \);
 3) use \(N(p) = N(q) + E(p, q) \).
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some + with −.

(M. Mossinghoff, C. Pinner, J. Vaaler (2008)).

- Apply Boyd’s formula (1977):

1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z) \), \(\varepsilon \in \{-1, 1\} \);
2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z) \), \(t \in [0, 1] \), by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z) q'(z) \) at the unimodular roots of \(q(z) \);
3) use \(N(p) = N(q) + E(p, q) \).
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some + with −.

(M. Mossinghoff, C. Pinner, J. Vaaler (2008))

- Apply Boyd’s formula (1977):
 1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z), \) \(\varepsilon \in \{-1, 1\}; \)
 2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z), \) \(t \in [0, 1], \) by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z)q'(z) \) at the unimodular roots of \(q(z); \)
 3) use \(N(p) = N(q) + E(p, q). \)
Our approach

- Start with a geometric progression polynomial

\[z^n + z^{n-1} + \cdots + z + 1 = \frac{z^{n+1} - 1}{z - 1} \]

and replace some \(+\) with \(-\).

(M. Mossinghoff, C. Pinner, J. Vaaler (2008)).

- Apply Boyd's formula (1977):
 1) calculate auxiliary polynomial \(q(z) = p(z) + \varepsilon p^*(z) \), \(\varepsilon \in \{-1, 1\} \);
 2) find \(E(p, q) \) – the number of exit points of the algebraic curve \(q(z, t) = p(z) + \varepsilon tp^*(z) \), \(t \in [0, 1] \), by evaluating the sign of \(\varepsilon z^{1-\deg p} p(z)q'(z) \) at the unimodular roots of \(q(z) \);
 3) use \(N(p) = N(q) + E(p, q) \).
Main results

Theorem 1
Suppose that n and k are two positive integers $1 \leq k \leq n - 1$. We assume that
\[
gcd(k, n + 1) = 1, \quad \text{if } n > 2k,
\]
and
\[
gcd(k + 1, n + 1) = 1, \quad \text{if } n < 2k.
\]
Then there exists Littlewood polynomial $p(z)$ of degree n, such that $N(p) = k$ and $U(p) = 0$.

Corollary 2
Let $n + 1$ be an odd prime. Then, for any k in the range $1 \leq k \leq n - 1$, there exists a Littlewood polynomial $p(z)$ of degree n with $N(p) = k$ and $U(p) = 0$.
Main results

Theorem 1

Suppose that n and k are two positive integers $1 \leq k \leq n - 1$. We assume that

$$\gcd(k, n + 1) = 1, \quad \text{if } n > 2k,$$

and

$$\gcd(k + 1, n + 1) = 1, \quad \text{if } n < 2k.$$

Then there exists Littlewood polynomial $p(z)$ of degree n, such that $N(p) = k$ and $U(p) = 0$.

Corollary 2

Let $n + 1$ be an odd prime. Then, for any k in the range $1 \leq k \leq n - 1$, there exists a Littlewood polynomial $p(z)$ of degree n with $N(p) = k$ and $U(p) = 0$.
Main results

Theorem 1

Suppose that \(n \) and \(k \) are two positive integers \(1 \leq k \leq n - 1 \). We assume that

\[
gcd(k, n + 1) = 1, \quad \text{if } n > 2k,
\]

and

\[
gcd(k + 1, n + 1) = 1, \quad \text{if } n < 2k.
\]

Then there exists Littlewood polynomial \(p(z) \) of degree \(n \), such that \(N(p) = k \) and \(U(p) = 0 \).

Corollary 2

Let \(n + 1 \) be an odd prime. Then, for any \(k \) in the range \(1 \leq k \leq n - 1 \), there exists a Littlewood polynomial \(p(z) \) of degree \(n \) with \(N(p) = k \) and \(U(p) = 0 \).
The trick: Littlewood polynomials with one sign change:
Up to sign \(\pm \),

\[
p(z) = z^n + z^{n-1} + \cdots + z^k - \underbrace{z^{k-1} - \cdots - z - 1}_{k \text{ negative terms}} = \]

\[
= \frac{z^n - 2z^k + 1}{z - 1},
\]

for some integers \(n \geq k \geq 1 \).
Main results

Littlewood polynomial of degree $n \geq 2$ with one negative term:

$$p(z) = z^n + \cdots + z^{k+1} - z^k + z^{k-1} + \cdots + 1 = \frac{z^{n+1} - 1}{z - 1} - 2z^k.$$

Basic cases:

a) Case 1: $p(z) = p^*(z)$, (the central term is negative).

b) Case 2: $p(z) \neq p^*(z)$. This occurs if $n \neq 2k$. There are two sub-cases:

a) $p(z)$ has no unimodular roots on the unit circle when $n \not\equiv 2 \pmod{6}$ or $k \not\equiv 1 \pmod{6}$.

b) $p(z)$ has some unimodular roots on the unit circle if $n \equiv 2 \pmod{6}$ and $k \equiv 1 \pmod{6}$.
Main results

Littlewood polynomial of degree $n \geq 2$ with one negative term:

$$p(z) = z^n + \cdots + z^{k+1} - z^k + z^{k-1} + \cdots + 1 = \frac{z^{n+1} - 1}{z - 1} - 2z^k.$$

Basic cases:

a) Case 1: $p(z) = p^*(z)$, (the central term is negative).

b) Case 2: $p(z) \neq p^*(z)$. This occurs if $n \neq 2k$. There are two sub-cases:

 a) $p(z)$ has no unimodular roots on the unit circle when $n \not\equiv 2 \pmod{6}$ or $k \not\equiv 1 \pmod{6}$.

 b) $p(z)$ has some unimodular roots on the unit circle if $n \equiv 2 \pmod{6}$ and $k \equiv 1 \pmod{6}$.
Main results

Littlewood polynomial of degree $n \geq 2$ with one negative term:

$$p(z) = z^n + \cdots + z^{k+1} - z^k + z^{k-1} + \cdots + 1 = \frac{z^{n+1} - 1}{z - 1} - 2z^k.$$

Basic cases:

a) Case 1: $p(z) = p^*(z)$, (the central term is negative).

b) Case 2: $p(z) \neq p^*(z)$. This occurs if $n \neq 2k$. There are two sub-cases:

a) $p(z)$ has no unimodular roots on the unit circle when $n \not\equiv 2 \pmod{6}$ or $k \not\equiv 1 \pmod{6}$.

b) $p(z)$ has some unimodular roots on the unit circle if $n \equiv 2 \pmod{6}$ and $k \equiv 1 \pmod{6}$.
Theorem 3

Let \(p(z) \) be a self-reciprocal Littlewood polynomial of degree \(n \geq 2 \) with one negative coefficient. Then

\[
U(p) = 4 \left\lfloor \frac{n - 2}{12} \right\rfloor + 2,
\]

\[
N(p) = N(p^*) = \frac{n}{2} - 2 \left\lfloor \frac{n - 2}{12} \right\rfloor - 1,
\]

where \(\lfloor x \rfloor \) is the floor function of \(x \). All roots of \(p(z) \) are simple. In particular, both \(U(p) \) and \(N(p) \) \(\sim n/3 \), as \(n \to \infty \).
Theorem 3

Let \(p(z) \) be a self-reciprocal Littlewood polynomial of degree \(n \geq 2 \) with one negative coefficient. Then

\[
U(p) = 4 \left\lfloor \frac{n - 2}{12} \right\rfloor + 2,
\]

\[
N(p) = N(p^*) = \frac{n}{2} - 2 \left\lfloor \frac{n - 2}{12} \right\rfloor - 1,
\]

where \(\lfloor x \rfloor \) is the floor function of \(x \). All roots of \(p(z) \) are simple. In particular, both \(U(p) \) and \(N(p) \) \(\sim n/3 \), as \(n \to \infty \).
Main results

Theorem 4

Let the polynomial $p(z)$ be as in Case 2a and $l = |n - 2k|$. If $n > 2k$, then

$$k + 1 \leq N(p) \leq k + 2 \left\lceil l/6 \right\rceil - 1.$$

where $\left\lceil x \right\rceil$ is the ceiling function of x. The lower bound is attained when $k \equiv 0 \pmod{l}$ and the upper bound is attained when $k \equiv 1 \pmod{l}$.

If $n < 2k$, then

$$k - 2 \left\lceil l/6 \right\rceil + 1 \leq N(p) \leq k - 1.$$

The lower bound is attained when $k \equiv 1 \pmod{l}$ and the upper bound is attained when $k \equiv 0 \pmod{l}$.
Main results

Theorem 5
Let the polynomial \(p(z) \) be as in Case 2b and \(l = |n − 2k| \).
If \(n > 2k \), then

\[
k + 1 \leq N(p) \leq \frac{n + k}{3} - 1.
\]

The lower bound is attained when \(k \equiv 0 \pmod{l} \) and the upper bound is attained when \(k \equiv 1 \pmod{l} \).
If \(n < 2k \), then

\[
\frac{n + k}{3} - 1 \leq N(p) \leq k - 3.
\]

The lower bound is attained when \(k \equiv 1 \pmod{l} \) and the upper bound is attained when \(k \equiv 0 \pmod{l} \).
Main results

A situation when the negative term occurs close to the middle term.

Corollary 6

Let \(p(z) \) be in Case 2. We have

(i) If \(\lim_{n \to \infty} k/n = 1/2 \), then \(\lim_{n \to \infty} N(p)/n = 1/2 \).

(ii) If \(0 < n - 2k \leq 6 \), then \(N(p) = k + 1 \).

(iii) If \(0 < 2k - n \leq 6 \), then

\[
N(p) = \begin{cases}
 k - 1 & \text{if } p(z) \text{ is in Case 2a}, \\
 k - 3 & \text{if } p(z) \text{ is in Case 2b}.
\end{cases}
\]
Main results

Definition 7
Let $k \in \mathbb{Z}$ and $\alpha \in \mathbb{R}$ be non-negative. Define the set $\mathcal{D}_k(\alpha)$ as the subset of the interval $[0, 1]$ where the scaled Dirichlet kernel $D_k(2\pi t)$ of degree k takes values greater than α:

$$\mathcal{D}_k(\alpha) := \{ t \in [0, 1] : D_k(2\pi t) > \alpha \}.$$
Main results

Theorem 8

Let \(p(z) \) be a Littlewood polynomial of degree \(n \) with one negative term \(z^k \). If \(k \) is fixed, then

\[
\lim_{n \to \infty} \frac{N(p)}{n} = \text{meas}(\mathcal{D}_k(2)),
\]

where \(\text{meas}(\mathcal{D}_k(2)) \) denotes the Lebesgue measure of the set \(\mathcal{D}_k(2) \). If \(k \) and \(n \) varies in such a way that the difference \(m = n - k \) is fixed, then

\[
\lim_{n \to \infty} \frac{N(p)}{n} = \text{meas}(\mathcal{D}_m^c(2)).
\]

Here, \(\mathcal{D}_m^c(2) := [0, 1] \setminus \mathcal{D}_m(2) \).
Values of $\text{meas}(\mathcal{D}_k(2))$

Table: Table of measures of the set $\mathcal{D}_k(2)$ for $1 \leq k \leq 15$

<table>
<thead>
<tr>
<th>k</th>
<th>$\text{meas}(\mathcal{D}_k(2))$</th>
<th>k</th>
<th>$\text{meas}(\mathcal{D}_k(2))$</th>
<th>k</th>
<th>$\text{meas}(\mathcal{D}_k(2))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3</td>
<td>6</td>
<td>0.132914</td>
<td>11</td>
<td>0.126664</td>
</tr>
<tr>
<td>2</td>
<td>0.274187</td>
<td>7</td>
<td>0.127286</td>
<td>12</td>
<td>0.120410</td>
</tr>
<tr>
<td>3</td>
<td>0.218549</td>
<td>8</td>
<td>0.141399</td>
<td>13</td>
<td>0.117483</td>
</tr>
<tr>
<td>4</td>
<td>0.180278</td>
<td>9</td>
<td>0.138567</td>
<td>14</td>
<td>0.124823</td>
</tr>
<tr>
<td>5</td>
<td>0.153086</td>
<td>10</td>
<td>0.132949</td>
<td>15</td>
<td>0.124141</td>
</tr>
</tbody>
</table>
Open questions

- Is there a more general theorem that gives sufficient conditions for the existence of a limit $\lim_{n \to \infty} N(p)/n$? for some sequence of polynomials $p(z)$?
- Are there any other constructions that modify the number of roots of $p(z)$ in a predictable way, without using the cyclotomic polynomials $p(z)$?
Open questions

▶ Is there a more general theorem that gives sufficient conditions for the existence of a limit \(\lim_{n \to \infty} N(p)/n \)? for some sequence of polynomials \(p(z) \)?

▶ Are there any other constructions that modify the number of roots of \(p(z) \) in a predictable way, without using the cyclotomic polynomials \(p(z) \)?
Open questions

- Is there a more general theorem that gives sufficient conditions for the existence of a limit $\lim_{n \to \infty} \frac{N(p)}{n}$ for some sequence of polynomials $p(z)$?

- Are there any other constructions that modify the number of roots of $p(z)$ in a predictable way, without using the cyclotomic polynomials $p(z)$?
Thank You!
Thank You!