On a class of polynomials related to Barker sequences

P. Borwein¹ S. Choi¹ J. Jankauskas²

¹Department of Mathematics, Simon Fraser University.

²Faculty of Mathematics, University of Vilnius

2011
Unimodular sequences and autocorrelations

- A unimodular sequence:

\[
a_0 \ a_1 \ a_2 \ \ldots \ \ldots \ a_n
\]

\[
a_j \in \mathbb{C}, \quad |a_j| = 1.
\]

- For such a sequence, the autocorrelation coefficients \(c_k, \ k = 0, 1, \ldots, n \) are defined as a dot product of the sequence and a shift of the same sequence:

\[
c_k := \sum_{j=0}^{n-k} a_j \overline{a}_{j+k}, \quad \text{for } k = 0, 1, \ldots, n.
\]
Unimodular sequences and autocorrelations

A unimodular sequence:

\[a_0 \ a_1 \ a_2 \ \ldots \ \ a_n \]

\[a_j \in \mathbb{C}, \quad |a_j| = 1. \]

For such a sequence, the autocorrelation coefficients \(c_k, k = 0, 1, \ldots, n \) are defined as a dot product of the sequence and a shift of the same sequence:

\[
c_k := \sum_{j=0}^{n-k} a_j \overline{a}_{j+k}, \quad \text{for } k = 0, 1, \ldots, n.
\]
Unimodular sequences and autocorrelations

- A unimodular sequence:
 \[a_0 \ a_1 \ a_2 \ \ldots \ \ a_n \]
 \[a_j \in \mathbb{C}, \quad |a_j| = 1. \]

- For such a sequence, the **autocorrelation coefficients** \(c_k, k = 0, 1, \ldots, n \) are defined as a dot product of the sequence and a shift of the same sequence:
 \[c_k := \sum_{j=0}^{n-k} a_j \overline{a}_{j+k}, \quad \text{for } k = 0, 1, \ldots, n. \]
Unimodular sequences and autocorrelations

▶ A unimodular sequence:

\[a_0 \ a_1 \ a_2 \ \ldots \ \ldots \ a_n \]

\[a_j \in \mathbb{C}, \quad |a_j| = 1. \]

▶ For such a sequence, the **autocorrelation coefficients** \(c_k, k = 0, 1, \ldots, n \) are defined as a *dot product* of the sequence and a shift of the same sequence:

\[\begin{align*}
 a_0 & \ a_1 \ \ldots \ \ldots \ a_k \ a_{k+1} \ \ldots \ a_n \\
 a_0 & \ a_1 \ \ldots \ a_{n-k} \ \ldots \ a_n
\end{align*} \]

\[c_k := \sum_{j=0}^{n-k} a_j \overline{a}_{j+k}, \quad \text{for } k = 0, 1, \ldots, n. \]
Unimodular sequences and autocorrelations

A unimodular sequence:

\[a_0 \ a_1 \ a_2 \ \ldots \ \ a_n \]

\[a_j \in \mathbb{C}, \quad |a_j| = 1. \]

For such a sequence, the autocorrelation coefficients \(c_k \), \(k = 0, 1, \ldots, n \) are defined as a dot product of the sequence and a shift of the same sequence:

\[
c_k := \sum_{j=0}^{n-k} a_j \overline{a}_{j+k}, \quad \text{for } k = 0, 1, \ldots, n.
\]
Unimodular sequences and autocorrelations

A unimodular sequence:

\[a_0 \ a_1 \ a_2 \ \ldots \ a_n \]

\[a_j \in \mathbb{C}, \quad |a_j| = 1. \]

For such a sequence, the autocorrelation coefficients \(c_k, k = 0, 1, \ldots, n \) are defined as a dot product of the sequence and a shift of the same sequence:

\[c_k := \sum_{j=0}^{n-k} a_j \overline{a}_{j+k}, \quad \text{for } k = 0, 1, \ldots, n. \]
Examples

▶ In particular, the coefficient c_0 is called a central autocorrelation coefficient:

\[c_0 = |a_0|^2 + |a_1|^2 + \cdots + |a_n|^2 = n + 1. \]

▶ A simple example: a sequence of length four:

\[1 \quad -1 \quad 1 \quad -1 \]

has autocorrelations $c_0 = 4$, $c_1 = -3$, $c_2 = 2$, $c_3 = -1$.
Examples

- In particular, the coefficient c_0 is called a **central autocorrelation coefficient**:
 \[
 c_0 = |a_0|^2 + |a_1|^2 + \cdots + |a_n|^2 = n + 1.
 \]

- A simple example: a sequence of length four:

 \[
 1 \quad -1 \quad 1 \quad -1
 \]

 has autocorrelations $c_0 = 4$, $c_1 = -3$, $c_2 = 2$, $c_3 = -1$.
In particular, the coefficient c_0 is called a central autocorrelation coefficient:

$$c_0 = |a_0|^2 + |a_1|^2 + \cdots + |a_n|^2 = n + 1.$$

A simple example: a sequence of length four:

1 -1 1 -1

has autocorrelations $c_0 = 4, c_1 = -3, c_2 = 2, c_3 = -1$.

A finite unimodular sequence a_0, a_1, \ldots, a_n is called a **Barker sequence**, if

1. All numbers a_j in this sequence are equal to -1 or 1;
2. The sequence has minimal possible autocorrelations: $c_k \in \{-1, 0, 1\}$.

Applications: Barker sequences are of considerable importance in the signal processing theory. In particular, Barker sequences are **optimal** sequences for the phase-modulated pulse compression in radar design.
A finite unimodular sequence a_0, a_1, \ldots, a_n is called a **Barker sequence**, if

1. All numbers a_j in this sequence are equal to -1 or 1;
2. The sequence has minimal possible autocorrelations: $c_k \in \{-1, 0, 1\}$.

Applications: Barker sequences are of considerable importance in the signal processing theory. In particular, Barker sequences are **optimal** sequences for the phase-modulated pulse compression in radar design.
Barker sequences and their applications

A finite unimodular sequence a_0, a_1, \ldots, a_n is called a **Barker sequence**, if

1. All numbers a_j in this sequence are equal to -1 or 1;
2. The sequence has minimal possible autocorrelations: $c_k \in \{-1, 0, 1\}$.

Applications: Barker sequences are of considerable importance in the signal processing theory. In particular, Barker sequences are optimal sequences for the phase-modulated pulse compression in radar design.
A finite unimodular sequence a_0, a_1, \ldots, a_n is called a Barker sequence, if

1. All numbers a_j in this sequence are equal to -1 or 1;
2. The sequence has minimal possible autocorrelations: $c_k \in \{-1, 0, 1\}$.

Applications: Barker sequences are of considerable importance in the signal processing theory. In particular, Barker sequences are optimal sequences for the phase-modulated pulse compression in radar design.
Barker sequences and their applications

A finite unimodular sequence a_0, a_1, \ldots, a_n is called a Barker sequence, if

1. All numbers a_j in this sequence are equal to -1 or 1;
2. The sequence has minimal possible autocorrelations: $c_k \in \{-1, 0, 1\}$.

Applications: Barker sequences are of considerable importance in the signal processing theory. In particular, Barker sequences are optimal sequences for the phase-modulated pulse compression in radar design.
Barker sequences and their applications

- A finite unimodular sequence a_0, a_1, \ldots, a_n is called a **Barker sequence**, if
 1. All numbers a_j in this sequence are equal to -1 or 1;
 2. The sequence has minimal possible autocorrelations: $c_k \in \{-1, 0, 1\}$.

- **Applications:** Barker sequences are of considerable importance in the signal processing theory. In particular, Barker sequences are **optimal** sequences for the phase-modulated pulse compression in radar design.
The research on Barker sequences

- All known normalized Barker sequences (since 1953) are summarized in the following table:

<table>
<thead>
<tr>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>++ −</td>
</tr>
<tr>
<td>4</td>
<td>++ − + and ++ + −</td>
</tr>
<tr>
<td>5</td>
<td>+++ + −</td>
</tr>
<tr>
<td>7</td>
<td>+++ − − + −</td>
</tr>
<tr>
<td>11</td>
<td>+++ − − − + − − + + −</td>
</tr>
<tr>
<td>13</td>
<td>+++ + + − − + + − + − +</td>
</tr>
</tbody>
</table>

- A theorem by Turyn and Storer (1961): there are no Barker sequences of odd length > 13.

- **Conjecture 1**

 There are no Barker sequences of even length for \(n > 4 \).
The research on Barker sequences

All known normalized Barker sequences (since 1953) are summarized in the following table:

<table>
<thead>
<tr>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>++ −</td>
</tr>
<tr>
<td>4</td>
<td>++ − ++ and + + + −</td>
</tr>
<tr>
<td>5</td>
<td>+ + + − −</td>
</tr>
<tr>
<td>7</td>
<td>+ + + − − + −</td>
</tr>
<tr>
<td>11</td>
<td>+ + + − − − + − + − + −</td>
</tr>
<tr>
<td>13</td>
<td>+ + + + + − − + + − + − +</td>
</tr>
</tbody>
</table>

A theorem by Turyn and Storer (1961): there are no Barker sequences of odd length > 13.

Conjecture 1

There are no Barker sequences of even length for $n > 4$.
The research on Barker sequences

- All known normalized Barker sequences (since 1953) are summarized in the following table:

<table>
<thead>
<tr>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>++ −</td>
</tr>
<tr>
<td>4</td>
<td>++ −− and + + +−</td>
</tr>
<tr>
<td>5</td>
<td>+ + + − −</td>
</tr>
<tr>
<td>7</td>
<td>+ + + − − + −</td>
</tr>
<tr>
<td>11</td>
<td>+ + + − − − + − − + − − +</td>
</tr>
<tr>
<td>13</td>
<td>+ + + + + − − + + − + − +</td>
</tr>
</tbody>
</table>

- A theorem by Turyn and Storer (1961): there are no Barker sequences of odd length > 13.

- Conjecture 1

 There are no Barker sequences of even length for \(n > 4 \).
The research on Barker sequences

- All known normalized Barker sequences (since 1953) are summarized in the following table:

<table>
<thead>
<tr>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>+ + −</td>
</tr>
<tr>
<td>4</td>
<td>+ + −− and + + +−</td>
</tr>
<tr>
<td>5</td>
<td>+ + + − −</td>
</tr>
<tr>
<td>7</td>
<td>+ + + − − + −</td>
</tr>
<tr>
<td>11</td>
<td>+ + + − − − + − − + − +−</td>
</tr>
<tr>
<td>13</td>
<td>+ + + + + − − + + − + − +</td>
</tr>
</tbody>
</table>

- A theorem by Turyn and Storer (1961): there are no Barker sequences of odd length > 13.

- Conjecture 1

 There are no Barker sequences of even length for $n > 4$.
All known normalized Barker sequences (since 1953) are summarized in the following table:

<table>
<thead>
<tr>
<th>Length</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>++ –</td>
</tr>
<tr>
<td>4</td>
<td>++ – – and ++ + –</td>
</tr>
<tr>
<td>5</td>
<td>+++ – –</td>
</tr>
<tr>
<td>7</td>
<td>+++ – – – – + –</td>
</tr>
<tr>
<td>11</td>
<td>+++ – – – – + – – + – + –</td>
</tr>
<tr>
<td>13</td>
<td>+++ + + – – – + + – – + +</td>
</tr>
</tbody>
</table>

A theorem by **Turyn and Storer** (1961): there are no Barker sequences of odd length > 13.

Conjecture 1

There are no Barker sequences of even length for $n > 4$.
Evidence of the non-existence and possible approaches

- Restrictions on the patterns of coefficients and possible lengths of Barker sequences were obtained by:
 - Turyn (1965),
 - Fredman, Saffari, and Smith (1989),
 - Eliahou, Kervaire, and Saffari (1990),
 - Eliahou and Kervaire (1992),
 - Jedwab and Lloyd (1992),
 - Schmidt (1999),
Evidence of the non-existence and possible approaches

- Restrictions on the patterns of coefficients and possible lengths of Barker sequences were obtained by:

 Turyn (1965),
 Fredman, Saffari, and Smith (1989),
 Eliahou, Kervaire, and Saffari (1990),
 Eliahou and Kervaire (1992),
 Jedwab and Lloyd (1992),
 Schmidt (1999),
 Leung and Schmidt (2005).
Evidence of the non-existence and possible approaches

- Restrictions on the patterns of coefficients and possible lengths of Barker sequences were obtained by:

 Turyn (1965),
 Fredman, Saffari, and Smith (1989),
 Eliahou, Kervaire, and Saffari (1990),
 Eliahou and Kervaire (1992),
 Jedwab and Lloyd (1992),
 Schmidt (1999),
 Leung and Schmidt (2005).
Current state and new approaches

- Computations show that no Barker sequences small even length exist. Current computer record belongs to Mossinghoff (2009): lengths up to $2 \cdot 10^{30}$ (with a possible exception 189260468001034441522766781604).

- Another possible approach to prove Barker non-existence conjecture emerged in the paper of Saffari (1990) and was later developed by Borwein and Mossinghoff (2008).
Current state and new approaches

- Computations show that no Barker sequences small even length exist. Current computer record belongs to Mossinghoff (2009): lengths up to $2 \cdot 10^{30}$ (with a possible exception 189260468001034441522766781604).

- Another possible approach to prove Barker non-existence conjecture emerged in the paper of Saffari (1990) and was later developed by Borwein and Mossinghoff (2008).
Current state and new approaches

- Computations show that no Barker sequences small even length exist. Current computer record belongs to Mossinghoff (2009): lengths up to $2 \cdot 10^{30}$ (with a possible exception 189260468001034441522766781604).

- Another possible approach to prove Barker non-existence conjecture emerged in the paper of Saffari (1990) and was later developed by Borwein and Mossinghoff (2008).
The most useful height for our purposes is a **Mahler measure**: for a polynomial

\[p(z) = a_n(z - \alpha_1)(z - \alpha_2) \ldots (z - \alpha_n) \in \mathbb{C}[z] \]

\[
M(p) := |a_n| \prod_{j=1}^{n} \max \{ 1, |\alpha_j| \}.
\]

Mahler measure may be computed using Jensen’s formula:

\[
\log M(p) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |p(e^{it})| \, dt
\]
The most useful height for our purposes is a **Mahler measure**: for a polynomial

\[p(z) = a_n(z - \alpha_1)(z - \alpha_2)\ldots(z - \alpha_n) \in \mathbb{C}[z] \]

\[
M(p) := |a_n| \prod_{j=1}^{n} \max \{1, |\alpha_j|\}.
\]

Mahler measure may be computed using Jensen’s formula:

\[
\log M(p) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |p(e^{it})| \, dt
\]
The most useful height for our purposes is a **Mahler measure**: for a polynomial

\[p(z) = a_n(z - \alpha_1)(z - \alpha_2) \ldots (z - \alpha_n) \in \mathbb{C}[z] \]

\[M(p) := |a_n| \prod_{j=1}^{n} \max \{1, |\alpha_j|\}. \]

Mahler measure may be computed using Jensen’s formula:

\[\log M(p) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |p(e^{it})| \, dt \]
The most useful height for our purposes is a Mahler measure: for a polynomial

\[p(z) = a_n(z - \alpha_1)(z - \alpha_2) \ldots (z - \alpha_n) \in \mathbb{C}[z] \]

\[
M(p) := |a_n| \prod_{j=1}^{n} \max \{ 1, |\alpha_j| \}.
\]

Mahler measure may be computed using Jensen’s formula:

\[
\log M(p) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |p(e^{it})| \, dt
\]
Barker polynomials

Definition. A polynomial

\[p(z) = a_0 + a_1 z + \ldots + a_n z^n \in \mathbb{C}[z] \]

is called a **Barker polynomial**, if the coefficients

\[a_0, a_1, \ldots, a_n \]

form a Barker sequence of length \(n + 1 \).
Definition. A polynomial

\[p(z) = a_0 + a_1 z + \ldots + a_n z^n \in \mathbb{C}[z] \]

is called a Barker polynomial, if the coefficients

\[a_0, a_1, \ldots, a_n \]

form a Barker sequence of length \(n + 1 \).
A conjecture

To prove the non-existence of long Barker sequences of even length, we consider a two part conjecture:

Conjecture 2

1. *If* \(p(z) \in \mathbb{C}[z] \) *is a Barker polynomial of odd degree* \(n \), *then* \(M(p) \) *is extremely close to its* \(L_2 \) *norm:*

\[
\lim_{n \to \infty} \left(M(p) - \sqrt{n + 1} \right) = 0.
\]

2. *If a polynomial* \(p(z) \) *has all coefficients equal to* \(-1\) *or* \(1 \), *then Mahler measure* \(M(p) \) *is bounded away from its* \(L_2 \) *norm:*

\[
M(p) < \sqrt{n + 1} - c.
\]

Mahler (1963), Newman (1965) (for* \(L_1 \) *norm).
A conjecture

To prove the non-existence of long Barker sequences of even length, we consider a two part conjecture:

Conjecture 2

1. *If* $p(z) \in \mathbb{C}[z]$ *is a Barker polynomial of odd degree* n, *then* $M(p)$ *is extremely close to its* L_2 *norm:*

 $$\lim_{n \to \infty} \left(M(p) - \sqrt{n + 1} \right) = 0.$$

2. *If* a polynomial $p(z)$ *has all coefficients equal to* -1 *or* 1, *then Mahler measure* $M(p)$ *is bounded away from its* L_2 *norm:*

 $$M(p) < \sqrt{n + 1} - c.$$

Mahler (1963), Newman (1965) (for L_1 *norm).*
A conjecture

To prove the non-existence of long Barker sequences of even length, we consider a two part conjecture:

Conjecture 2

1. If \(p(z) \in \mathbb{C}[z] \) is a Barker polynomial of odd degree \(n \), then Mahler measure \(M(p) \) is extremely close to its \(L_2 \) norm:

 \[
 \lim_{n \to \infty} \left(M(p) - \sqrt{n+1} \right) = 0.
 \]

2. If a polynomial \(p(z) \) has all coefficients equal to \(-1\) or \(1\), then Mahler measure \(M(p) \) is bounded away from its \(L_2 \) norm:

 \[
 M(p) < \sqrt{n+1} - c.
 \]

Mahler (1963), Newman (1965) (for \(L_1 \) norm).
A conjecture

To prove the non-existence of long Barker sequences of even length, we consider a two part conjecture:

Conjecture 2

1. If \(p(z) \in \mathbb{C}[z] \) is a Barker polynomial of odd degree \(n \), then \(M(p) \) is extremely close to its \(L_2 \) norm:

\[
\lim_{n \to \infty} \left(M(p) - \sqrt{n + 1} \right) = 0.
\]

2. If a polynomial \(p(z) \) has all coefficients equal to \(-1\) or \(1\), then Mahler measure \(M(p) \) is bounded away from its \(L_2 \) norm:

\[
M(p) < \sqrt{n + 1} - c.
\]

Mahler (1963), Newman (1965) (for \(L_1 \) norm).
A conjecture

To prove the non-existence of long Barker sequences of even length, we consider a two part conjecture:

Conjecture 2

1. If \(p(z) \in \mathbb{C}[z] \) is a Barker polynomial of odd degree \(n \), then \(M(p) \) is extremely close to its \(L_2 \) norm:

\[
\lim_{n \to \infty} \left(M(p) - \sqrt{n+1} \right) = 0.
\]

2. If a polynomial \(p(z) \) has all coefficients equal to \(-1\) or \(1\), then Mahler measure \(M(p) \) is bounded away from its \(L_2 \) norm:

\[
M(p) < \sqrt{n+1} - c.
\]

Mahler (1963), Newman (1965) (for \(L_1 \) norm).
A conjecture

To prove the non-existence of long Barker sequences of even length, we consider a two part conjecture:

Conjecture 2

1. If \(p(z) \in \mathbb{C}[z] \) is a Barker polynomial of odd degree \(n \), then \(M(p) \) is extremely close to its \(L_2 \) norm:

\[
\lim_{n \to \infty} \left(M(p) - \sqrt{n + 1} \right) = 0.
\]

2. If a polynomial \(p(z) \) has all coefficients equal to \(-1\) or \(1\), then Mahler measure \(M(p) \) is bounded away from its \(L_2 \) norm:

\[
M(p) < \sqrt{n + 1} - c.
\]

Mahler (1963), Newman (1965) (for \(L_1 \) norm).
New results

Suppose that $p(z)$ is a Barker polynomial of odd degree n. Then the product $p(z)p(1/z)$ takes the form

$$P(z) = (n + 1) + \sum_{\substack{k=1 \kern-1.5ex \atop k - \text{odd}}}^{n} c_k \left(z^k + \frac{1}{z^k} \right),$$

where $c_k \in \{-1, 1\}$.

Definition. Let \mathcal{LP}_n be the class of polynomials of the above form. In this class, the polynomials with all coefficients $c_k = 1$ are of special interest and are denoted by $R_n(z)$:

$$R_n(z) = (n + 1) + \sum_{\substack{k=1 \kern-1.5ex \atop k - \text{odd}}}^{n} c_k \left(z^k + \frac{1}{z^k} \right).$$
Suppose that \(p(z) \) is a Barker polynomial of odd degree \(n \). Then the product \(p(z)p(1/z) \) takes the form

\[
P(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right),
\]

where \(c_k \in \{-1, 1\} \).

Definition. Let \(\mathcal{LP}_n \) be the class of polynomials of the above form. In this class, the polynomials with all coefficients \(c_k = 1 \) are of special interest and are denoted by \(R_n(z) \):

\[
R_n(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right)
\]
Suppose that $p(z)$ is a Barker polynomial of odd degree n. Then the product $p(z)p(1/z)$ takes the form

\[P(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right), \]

where $c_k \in \{-1, 1\}$.

Definition. Let \mathcal{LP}_n be the class of polynomials of the above form. In this class, the polynomials with all coefficients $c_k = 1$ are of special interest and are denoted by $R_n(z)$:

\[R_n(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right) \]
New results

Suppose that \(p(z) \) is a Barker polynomial of odd degree \(n \). Then the product \(p(z)p(1/z) \) takes the form

\[
P(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right),
\]

where \(c_k \in \{-1, 1\} \).

Definition. Let \(L\mathcal{P}_n \) be the class of polynomials of the above form. In this class, the polynomials with all coefficients \(c_k = 1 \) are of special interest and are denoted by \(R_n(z) \):

\[
R_n(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right)
\]
New results

Suppose that \(p(z) \) is a Barker polynomial of odd degree \(n \). Then the product \(p(z)p(1/z) \) takes the form

\[
P(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right),
\]

where \(c_k \in \{-1, 1\} \).

Definition. Let \(\mathcal{LP}_n \) be the class of polynomials of the above form. In this class, the polynomials with all coefficients \(c_k = 1 \) are of special interest and are denoted by \(R_n(z) \):

\[
R_n(z) = (n + 1) + \sum_{k=1}^{n} c_k \left(z^k + \frac{1}{z^k} \right)
\]
New results

Theorem 1
For a polynomial $R_n \in \mathcal{LP}_n$,

$$M(R_n) > n - \frac{2}{\pi} \log n + O(1).$$

Theorem 2
The polynomials $R_n(z)$ and $R_n(-z)$ have minimal Mahler measures in \mathcal{LP}_n, namely, for any $P \in \mathcal{LP}_n$

$$M(P) \geq M(R_n).$$

Theorem 3
For $s < 1$, the polynomials $R_n(\pm z)$ have minimal L_s norms in the class \mathcal{LP}_n. In the other hand, R_n have maximal L_s norms in \mathcal{LP}_n for $s \in [2j - 1, 2j]$, $j \in \mathbb{N}$, and also for all s which are sufficiently large: $s > s_0(n)$.
New results

Theorem 1
For a polynomial $R_n \in \mathcal{LP}_n$,

$$M(R_n) > n - \frac{2}{\pi} \log n + O(1).$$

Theorem 2
The polynomials $R_n(z)$ and $R_n(-z)$ have minimal Mahler measures in \mathcal{LP}_n, namely, for any $P \in \mathcal{LP}_n$

$$M(P) \geq M(R_n).$$

Theorem 3
For $s < 1$, the polynomials $R_n(\pm z)$ have minimal L_s norms in the class \mathcal{LP}_n. In the other hand, R_n have maximal L_s norms in \mathcal{LP}_n for $s \in [2j - 1, 2j]$, $j \in \mathbb{N}$, and also for all s which are sufficiently large: $s > s_0(n)$.
New results

Theorem 1
For a polynomial $R_n \in \mathcal{LP}_n$,

$$M(R_n) > n - \frac{2}{\pi} \log n + O(1).$$

Theorem 2
The polynomials $R_n(z)$ and $R_n(-z)$ have minimal Mahler measures in \mathcal{LP}_n, namely, for any $P \in \mathcal{LP}_n$

$$M(P) \geq M(R_n).$$

Theorem 3
For $s < 1$, the polynomials $R_n(\pm z)$ have minimal L_s norms in the class \mathcal{LP}_n. In the other hand, R_n have maximal L_s norms in \mathcal{LP}_n for $s \in [2j - 1, 2j]$, $j \in \mathbb{N}$, and also for all s which are sufficiently large: $s > s_0(n)$.
New results

Theorem 1
For a polynomial $R_n \in \mathcal{LP}_n$,

$$M(R_n) > n - \frac{2}{\pi} \log n + O(1).$$

Theorem 2
The polynomials $R_n(z)$ and $R_n(-z)$ have minimal Mahler measures in \mathcal{LP}_n, namely, for any $P \in \mathcal{LP}_n$

$$M(P) \geq M(R_n).$$

Theorem 3
For $s < 1$, the polynomials $R_n(\pm z)$ have minimal L_s norms in the class \mathcal{LP}_n. In the other hand, R_n have maximal L_s norms in \mathcal{LP}_n for $s \in [2j - 1, 2j]$, $j \in \mathbb{N}$, and also for all s which are sufficiently large: $s > s_0(n)$.
Corollary 4

If \(p(z) \) is Barker polynomial of odd degree \(n \), then

\[
M(p) > \sqrt{n - 2/\pi \log n} + O(1).
\]

This proves the first part of Conjecture 2.

However, we still need a considerable progress on the second part of the Conjecture 2.