Associate Professor, Ph.D.
Faculty of Mathematics and Informatics |

computer aided geometric design, computer graphics.

- M. Skopenkov, R. Krasauskas, Surfaces containing two circles through each point, Mathematische Annalen, published on line 13 August 2018. [view-only version]
- R. Krasauskas, Unifying Theory of Pythagorean-Normal Surfaces Based on Geometric Algebra, Advances in Applied Clifford Algebras 27, (2017) 491-502.
- R. Krasauskas, Rational patches on Darboux and isotropic cyclides and their modeling applications - Part I, BIRS Workshop "Computational Algebra and Geometric Modeling", Oaxaca, Mexico, 2016, August 7-12. [video]
- S. Zube, R. Krasauskas, Representation of Dupin cyclides using quaternions, Graphical Models 82, (2015) 110-122.
- R. Krasauskas, S. Zube, S. Cacciola, Bilinear Clifford-Bezier Patches on Isotropic Cyclides, In: Mathematical Methods for Curves and Surfaces, Lect. Notes Comput. Sc. 8177 (2014), 283-303. [pdf file]
- R. Krasauskas, S. Zube, Rational Bezier formulas with quaternion and Clifford algebra weights, in: Tor Dokken, Georg Muntingh (eds.), SAGA - Advances in ShApes, Geometry, and Algebra, Geometry and Computing, vol. 10, Springer, 2014, pp. 147-166. [pdf file]
- V. Karpavicius, R. Krasauskas, Real-time visualization of Moebius transformations in space using Quaternionic-Bezier approach, in: 21-st International Conference on Computer Graphics, Visualization and Computer Vision (WSCG), Communication Papers Proceedings, 2013, pp. 259-266. [pdf file]
- H.E.I. Dahl, R. Krasauskas, Rational fixed radius rolling ball blends between natural quadrics, Computer Aided Geometric Design 29, (2012) 691-706.
- R. Krasauskas and S. Zube, Bezier-like parametrizations of spheres and cyclides using geometric algebra, 9th International Conference on Clifford Algebras and their Applications in Mathematical Physics, K. Guerlebeck (ed.) Weimar, Germany, 15-20 July 2011. [pdf file]
- S. Zube and R. Krasauskas, Dupin Cyclide Representation Using Quaternions, Poster at the SAGA Autumn School, Kolympari, Crete, October 4-8, 2010. [pdf file]
- R. Krasauskas and M. Peternell, Rational offset surfaces and their modeling applications, in: IMA Volume 151: Nonlinear Computational Geometry, (eds.) I.Z. Emiris, F. Sottile, and Th. Theobald, p. 109-135, 2010. [pdf file]
- R. Krasauskas, Branching blend of natural quadrics based on surfaces with rational offsets, Computer Aided Geometric Design 25, (2008) 332-341. [pdf file]
- R. Krasauskas, S. Zube, Canal surfaces defined by quadratic families of spheres in: B. Juettler and R. Piene (eds.) Geometric Modeling and Algebraic Geometry, Springer 2008, 79-92.
- R. Krasauskas, Minimal rational parametrizations of canal surfaces, Computing 79, (2007) 281-290. [pdf file]
- R. Krasauskas, Bezier patches on almost toric surfaces, in: Elkadi, M., Mourrain, B. and Piene, R. (eds.), Algebraic Geometry and Geometric Modeling, Mathematics and Visualization Series, Springer, (2006) 135-150. [pdf file: preprint version]
- R. Krasauskas, M. Kazakeviciute, Universal rational parametrizations and spline curves on toric surfaces, in: Computational Methods for Algebraic Spline Surfaces, ESF Explo-ratory Workshop, Springer, (2005) 213-232.
- R. Krasauskas, R. Goldman, Toric Bezier patches with depth, Topics in Algebraic Geometry and Geometric Modeling, Contemporary Mathematics 334, (2003) 65-291.
- D. Cox, R. Krasauskas, M. Mustata, Universal rational parametrizations and toric varieties, Topics in Algebraic Geometry and Geometric Modeling, Contemporary Mathematics 334, (2003) 241-265.
- R. Krasauskas, Toric surface patches, Advances in Computational mathematics 17, (2002) 89-113. [pdf file]
- R. Krasauskas, Shape of Toric Surfaces, in: R. Durikovic, S. Czanner (eds.), Proceedings of the Spring Conference on Computer Graphics SCCG 2001}, IEEE, 2001, 55-62. [pdf file]
- J. Walner, R. Krasauskas, H. Pottmann, Error propagation in geometric constructions, Computer-Aided Design 32, (2000) 631-641.
- R. Krasauskas, C. Maeurer, Studying Cyclides with Laguerre Geometry, Computer Aided Geometric Design 17, (2000), 101-126.