Corrigendum

Corrigendum to “Stability in \mathbb{D} of martingales and backward equations under discretization of filtration”

François Coquet¹, Vigirdas Mackevičius², Jean Mémin¹

¹IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
²Matematikos fakultetas, Vilniaus universitetas, Naugarduko 24, 2600 Vilnius, Lithuania

The proof of Lemma 3 and, consequently, that of Theorem 2 in our paper (Coquet et al., 1998) is not correct: there is no reason for the equality

$$
\mathcal{L}\left(\mathcal{E}(\mathcal{U}_n^m + \tilde{X}_n^m | \mathcal{F}_n^m) | \mathcal{P}\right) = \mathcal{L}\left(\mathcal{E}\left(\int_0^T g_x^n(V_n^m) \, dA_x^m + X_n^m | \mathcal{F}_n^m\right) | \mathcal{P}\right),
$$

at the end of the proof.

Using another method, however, we can get a better result than that stated in Theorem 2.

In what follows, the notation of Coquet et al. (1998) is employed. The hypotheses given in Section 3 of Coquet et al. (1998) remain unchanged, except for (Hₚ) where we assume that the Markov process Y is càdlàg and not necessarily continuous.

Theorem 1. Suppose hypotheses (HX), (HA), (Hg), (Hₚ), and (Hco) are satisfied. Then the sequence (V_n^m) of the solutions of equations (\ast) converge to the solution V of (\ast) in probability for the Skorokhod topology.

Proof. Our method for proving this result is considering, for each n, the iterates $U_{n,k}$ given by Picard approximation converging, as $k \to \infty$, to the solution V_n^m of (\ast) and proving that $U_{n,k}$ converges in probability, as $n \to \infty$, to U^k, the k-iterated process of the Picard approximation of V, the solution of (\ast).

To be precise, we put:

for equation (\ast),

$$
U_{n,0}^m = 0,
$$

$$
U_{n,1}^m = \mathcal{E}\left(\int_t^T g_x^n(U_{n,0}^m) \, dA_x^m + X_n^m | \mathcal{F}_n^m\right)
$$

¹PII of the original article: S0304-4149(98)00013-1

*Corresponding author.
and, by induction,
\[U^n_{i,k} = E \left(\int_{i}^{T} g^n_s(U^n_{i,k-1}) \, dA^n_s + X^n|\mathcal{F}_i^n \right) \]
for equation (\(*\)),
\[U^n_0 = 0, \]
\[U^n_1 = E \left(\int_{i}^{T} g^n_s(U^n_0) \, dA_s + X_j|\mathcal{F}_i^n \right) \]
and, by induction,
\[U^n_k = E \left(\int_{i}^{T} g^n_s(U^n_{k-1}) \, dA_s + X_j|\mathcal{F}_i^n \right). \]

Step 1: In Theorems 2–4 of Antonelli (1993), Antonelli proved the inequality
\[\| U^{n,k+1} - U^{n,k} \|_{L^1(\mu_n)} \leq \frac{(c_n \beta_n)^{k+1}}{(k+1)!} \| U^{n,1} \|_{L^1(\mu_n)}, \]
where \(\mu_n(dt, d\omega) = dA^n_t(\omega)P(d\omega). \)

We deduce:
\[\| V^n - U^{n,k} \|_{L^1(\mu_n)} \leq \sum_{p=k+1}^{\infty} \frac{(c_n \beta_n)^p}{p!} M_n, \]
where
\[M_n = \beta_n E \left(\int_{0}^{T} |g^n_s(0)|dA^n_s + |X^n| \right). \]

Using Doob’s maximal inequality, we easily get that
\[\forall \varepsilon > 0, \quad P \left[\sup_{t \leq T} |V^n_t - U^{n,k+1}_t| \geq \varepsilon \right] \leq P \left[\sup_{t \leq T} c_n E \left(\int_{0}^{T} |V^n_s - U^{n,k}_s| \, dA_s + |X^n| \right) > \varepsilon \right] \leq \frac{1}{\epsilon} c_n \| V^n - U^{n,k} \|_{L^1(\mu_n)}, \]
whence
\[\forall \varepsilon > 0, \quad P \left[\sup_{t \leq T} |V^n_t - U^{n,k+1}_t| \geq \varepsilon \right] \leq \frac{1}{\varepsilon} \sum_{p=k+1}^{\infty} \frac{(c_n \beta_n)^p}{p!} c_n M_n. \]

Finally, the assumptions of Theorem 1 give the uniform convergence (in \(n \)):
\[\forall \varepsilon > 0, \quad \sup_n P \left[\sup_{t \leq T} |V^n_t - U^{n,k}_t| \geq \varepsilon \right] \to 0, \quad k \to \infty. \] (1)
Moreover, from hypothesis (Hg), we get by induction that, for every k,

$$\sup_{n} E \left[\sup_{t \in T} \left| U^{n,k}_{t} \right|^{1+\delta} \right] \leq \infty,$$

(2)

and

$$\sup_{n} E \left[\left(\int_{0}^{T} g^{n}_{s}(U^{n,k}_{s}) \, dA^{n}_{s} \right)^{1+\delta} + \left| X^{n} \right|^{1+\delta} \right] \leq \infty.$$

(3)

Step 2: All convergences below are for the Skorokhod topology. From (HA) and (Hg) we get the convergence

$$\left(A^{n}, \int_{0}^{T} g^{n}_{s}(0) \, dA^{n}_{s} \right) \overset{P}{\longrightarrow} \left(A, \int_{0}^{T} g_{s}(0) \, dA_{s} \right).$$

Then, with (H.\cF) (using Theorem 1 of Antonelli (1993)), (HX), (Hco), and above inequalities (2) and (3), we get

$$\left(A^{n}, \int_{0}^{T} g^{n}_{s}(0) \, dA^{n}_{s}, E \left[\int_{0}^{T} g^{n}_{s}(0) \, dA^{n}_{s} + X^{n} | \cF^{n} \right] \right) \overset{P}{\longrightarrow} \left(A, \int_{0}^{T} g_{s}(0) \, dA_{s}, E \left[\int_{0}^{T} g_{s}(0) \, dA_{s} + X | \cF \right] \right).$$

Hence

$$\left(A^{n}, U^{n,1} \right) \overset{P}{\longrightarrow} (A, U^{1}).$$

We can iterate the procedure: from

$$\left(A^{n}, U^{n,k} \right) \overset{P}{\longrightarrow} (A, U^{k}),$$

we deduce, using the continuity of g and the convergence of Stieltjes integrals (see for example, Jakubowski et al., 1989):

$$\left(A^{n}, \int_{0}^{T} g^{n}_{s}(U^{n,k}_{s}) \, dA^{n}_{s} \right) \overset{P}{\longrightarrow} \left(A, \int_{0}^{T} g_{s}(U^{k}_{s}) \, dA_{s} \right).$$

Using again inequalities (2), (3), and the hypotheses (HA), (H.\cF), (Hco), and (Hg) we get

$$\left(A^{n}, U^{n,k+1} \right) \overset{P}{\longrightarrow} (A, U^{k+1}).$$

Finally, for every k, we have the convergence for the Skorokhod topology of processes:

$$U^{n,k} \overset{P}{\longrightarrow} U^{k}.$$

Inequality (1) of Step 1 then gives the desired result

$$V^{n} \overset{P}{\longrightarrow} V.$$

Remark. Theorem 1 answers the question stated in Remark 3 following the proof of Theorem 2 in Coquet et al. (1998); however, Theorem 1 is not completely comparable.
to Proposition 3 of Coquet et al. (1998): in the latter, (Hco) is not needed, but (HA) is replaced by the stronger hypothesis of convergence in variation of A^n to a deterministic A.

References