A Hölderian FCLT for some multiparameter summation process of independent non-identically distributed random variables

Vaidotas Zemlys

18th of July, 2007

Abstract

Let \(\{X_{n,k}, k \leq k_n, n, k_n \in \mathbb{N}\} \) be a triangular array of independent non-identically distributed random variables. Using a non uniform grid adapted to the variances of the \(X_{n,k} \)'s, we introduce a new construction of a summation process \(\xi_n \) of the triangular array based on the collection of sets \([0, t_1] \times \cdots \times [0, t_d], 0 \leq t_i \leq 1, i = 1, \ldots, d\). We investigate its convergence in distribution in some Hölder spaces. It turns out that for \(d \geq 2 \) the limiting process is not necessarily the standard Wiener sheet. This contrasts with classical Prohorov’s result for the case \(d = 1 \).

1 Introduction

Convergence of stochastic processes to some Brownian motion or related process is an important topic in probability theory and mathematical statistics. The first functional central limit theorem by Donsker and Prohorov states the \(C[0,1] \)-weak convergence of \(n^{-1/2} \xi_n \) to the standard Brownian motion \(W \). Here \(\xi_n \) denotes the random polygonal line process indexed by \([0,1] \) with vertices \((k/n, S_k), k = 0, 1, \ldots, n \) and \(S_0 := 0, S_k := X_1 + \cdots + X_k, k \geq 1 \), are the partial sums of a sequence \((X_i)_{i \geq 1}\) of i.i.d. random variables such that \(E X_1 = 0 \) and \(E X_1^2 = 1 \).

Using the same construction for triangular array \(\{X_{n,k}, k = 1, \ldots, k_n, n \in \mathbb{N}\} \), where for each \(n \in \mathbb{N} \) \(X_{n,k} \) are independent but non-identically distributed, such polygonal line process will have vertices \((k/k_n, S_n(k))\) with \(S_n(k) = X_{n,1} + \cdots + X_{n,k} \). Then the variance at fixed time \(t \) will be

\[
E \xi_n(t)^2 = \sum_{k \leq [nt]} E X_{n,k}^2,
\]

and we see that the limiting process would not necessarily be the standard Brownian motion. Thus another construction of polygonal line process is needed. To solve this problem Prohorov [5] introduced random polygonal line process \(\Xi_n \) indexed by \([0,1] \) with vertices \((b_n(k), S_n(k))\), where \(b_n(k) = E X_{n,1}^2 + \cdots + E X_{n,k}^2 \), with assumption that \(b_n(k_n) = 1 \). Prokhorov proved that \(\Xi_n \) converges to a standard Brownian motion if triangular array satisfies the conditions of central limit theorem. Note that this process coincides with \(n^{-1/2} \xi_n \) in the special case where \(X_{n,k} = n^{-1/2} X_k \) with i.i.d. \(X_k \)'s.
The functional central limit theorem implies via continuous mapping the convergence in distribution of $f(\Xi_n)$ to $f(W)$ for any continuous functional $f: C[0,1] \to \mathbb{R}$. This provides many statistical applications. On the other hand, considering that the paths of Ξ_n are piecewise linear and that W has roughly speaking, an α-Hölder regularity for any exponent $\alpha < 1/2$, it is tempting to look for a stronger topological framework for the weak convergence of Ξ_n to W. In addition to the satisfaction of mathematical curiosity, the practical interest of such an investigation is to obtain a richer set of continuous functionals of the paths. For instance, Hölder norms of Ξ_n (in i.i.d. case) are closely related to some test statistics to detect short “epidemic” changes in the distribution of the X_i’s, see [9, 10].

In 2003, Račkauskas and Suquet [7] obtained functional central limit theorem in the separable Banach spaces \mathbb{H}_0^α, $0 < \alpha < 1/2$, of functions $x: [0,1] \to \mathbb{R}$ such that

$$
\|x\|_\alpha := |x(0)| + \omega_\alpha(x,1) < \infty,
$$

with

$$
\omega_\alpha(x,\delta) := \sup_{0 < |t-s| \leq \delta} \frac{|x(t) - x(s)|}{|t-s|^\alpha} \xrightarrow{\delta \to 0} 0.
$$

Assuming infinitesimal negligibility of triangular array and moment condition

$$
\lim_{n \to \infty} \sum_{k=1}^{k_n} (\mathbb{E} X_{n,k}^2)^{-\alpha q} \mathbb{E} |X_{n,k}|^q = 0 \quad (1)
$$

for $q > 1/(1/2 - \alpha)$, they proved the weak convergence of Ξ_n to W in the Hölder space \mathbb{H}_0^α for any $\alpha < 1/2 - 1/q$.

For general summation processes, the case of non-identically distributed variables was investigated by Goldie and Greenwood [2], [3]. General summation process $\{\xi_n(A); A \in \mathcal{A}\}$ is defined for a collection \mathcal{A} of Borel subsets of $[0,1]^d$ by

$$
\xi_n(A) = \sum_{1 \leq j \leq n} |R_{n,j}^{-1}|R_{n,j} \cap A|X_j, \quad (2)
$$

with $\{X_j, j \in \mathbb{N}^d\}$ independent but not identically distributed zero mean random variables and where $j = (j_1, \ldots, j_d)$, $n = (n_1, \ldots, n_d)$ and $R_{n,j}$ is the “rectangle”

$$
R_{n,j} := \left[\frac{j_1 - 1}{n_1}, \frac{j_1}{n_1}\right) \times \cdots \times \left[\frac{j_d - 1}{n_d}, \frac{j_d}{n_d}\right). \quad (3)
$$

Here by $|A|$ we denoted Lebesgue measure of the set A and the indexation condition $1 \leq j \leq n^d$ is understood componentwise : $1 \leq j_1 \leq n_1, \ldots, 1 \leq j_d \leq n_d$.

Goldie and Greenwood investigated the conditions when this process converges to standard Wiener process indexed by \mathcal{A}, which is defined as a mean zero Gaussian process W with covariance

$$
\mathbb{E} W(A)W(B) = |A \cap B|, \quad A, B \in \mathcal{A}.
$$

They proved the functional central limit theorem in $C(\mathcal{A})$ (space of continuous functions $f: \mathcal{A} \to \mathbb{R}$ with supremum norm) basically requiring that the variance
of process $\xi_n(A)$ converge to the variance of $W(A)$. An important class of sets is $A = Q_d$ where

$$Q_d := \{ [0, t_1] \times \cdots \times [0, t_d]; t = (t_1, \ldots, t_d) \in [0, 1]^d \}. \quad (4)$$

Note that when $d = 1$ the partial sum process ξ_n based on Q_1 is the random polygonal line of Donsker-Prohorov’s theorem. Thus it is obvious that for case $d = 1$, ξ_n does not coincide with Ξ_n.

The attempt to introduce adaptive construction for general summation processes was made by Bickel and Wichura [1]. However they put some restrictions on variance of random variables in triangular array. For zero mean independent random variables $\{X_{n,ij}, 1 \leq i \leq I_n, 1 \leq j \leq J_n\}$ with variances $E X_{n,ij} = a_{n,i} b_{n,j}$ satisfying $\sum a_{n,i} = 1 = \sum b_{n,j}$, they defined summation process as

$$\zeta_n(t_1, t_2) = \sum_{i \leq A_n(t_1)} \sum_{j \leq B_n(t_1)} X_{n,ij},$$

where

$$A_n(t_1) = \max\{k : \sum_{i \leq k} a_{n,i} < t_1\}, \quad B_n(t_2) = \max\{l : \sum_{j \leq l} b_{n,j} < t_2\}. \quad \text{It is easy to see that this construction is two-dimensional time generalisation of jump version of Prokhorov construction. Bickel and Wichura proved that the process ζ_n converges in the space $D([0, 1]^2)$ to a Wiener sheet, if $a_{n,i}$ and $b_{n,j}$ are infinitesimally small and the random variables $\{X_{n,ij}\}$ satisfy Lindeberg condition.}

In this paper we introduce new summation process $\{\Xi_n(t), t \in [0, 1]^d\}$ which coincides with the process $\{\Xi_n(t), t \in [0, 1]^d\}$ for $d = 1$. Sufficient conditions for weak convergence in Hölder spaces are given. For the case $d = 1$ they coincide with conditions given by Račkauskas and Suquet. The limiting process in general case is not standard Wiener sheet. It is a mean zero Gaussian process with covariance depending on the limit of $E \Xi_n(t)^2$. Examples of possible limiting processes are given. In case of special variance structure of triangular array as in Bickel and Wichura it is shown that the limiting process is a standard Wiener sheet.

2 Notations and results

In this paper vectors $t = (t_1, \ldots, t_d)$ of \mathbb{R}^d, $d \geq 2$, are typeset in italic bold. In particular,

$$1 := (1, \ldots, 1).$$

For $1 \leq k < l \leq d$, $t_{k:l}$ denotes the “subvector”

$$t_{k:l} := (t_k, t_{k+1}, \ldots, t_l).$$

The set \mathbb{R}^d is equipped with the partial order

$$s \leq t \quad \text{if and only if} \quad s_k \leq t_k, \quad \text{for all} \quad k = 1, \ldots, d.$$
As a vector space \mathbb{R}^d, is endowed with the norm

$$|t| = \max(|t_1|, \ldots, |t_d|), \quad t = (t_1, \ldots, t_d) \in \mathbb{R}^d.$$

Together with the usual addition of vectors and multiplication by a scalar, we use also the componentwise multiplication and division of vectors $s = (s_1, \ldots, s_d)$, $t = (t_1, \ldots, t_d)$ in \mathbb{R}^d defined whenever it makes sense by

$$st := (s_1t_1, \ldots, s_dt_d), \quad s/t := (s_1/t_1, \ldots, s_d/t_d).$$

Also we will use componentwise minimum

$$t \wedge s := (t_1 \wedge s_1, \ldots, t_d \wedge s_d)$$

Partial order as well as all these operations are also intended componentwise when one of the two involved vectors is replaced by a scalar. So for $c \in \mathbb{R}$ and $t \in \mathbb{R}^d$, $c \leq t$ means $c \leq t_k$ for $k = 1, \ldots, d$, $t + c := (t_1 + c, \ldots, t_d + c)$, $c/t := (c/t_1, \ldots, c/t_d)$.

For $n = (n_1, \ldots, n_d) \in \mathbb{N}^d$ write

$$\pi(n) := n_1 \ldots n_d,$$

and for $t = (t_1, \ldots, t_d) \in \mathbb{R}^d$

$$m(t) := \min(t_1, \ldots, t_d).$$

We define the Hölder space $H^\alpha_0([0, 1]^d)$ as the vector space of functions $x : [0, 1]^d \to \mathbb{R}$ such that

$$\|x\|_\alpha := |x(0)| + \omega_\alpha(x, 1) < \infty,$$

with

$$\omega_\alpha(x, \delta) := \sup_{0 < |t - s| \leq \delta} \frac{|x(t) - x(s)|}{|t - s|^\alpha} \to 0.$$

Endowed with the norm $\|\|_\alpha$, $H^\alpha_0([0, 1]^d)$ is a separable Banach space, see [6] or [8].

As we are mainly dealing in this paper with weak convergence in some function spaces, it is convenient to introduce the following notations. Let B be some separable Banach space and $(Y_n)_{n \geq 1}$ and $(Z_n)_{n \geq 1}$ be respectively a sequence and a random field of random elements in B. We write

$$Y_n \xrightarrow{B}{n \to \infty} Y, \quad Z_n \xrightarrow{B}{m(n) \to \infty} Z,$$

for their weak convergence in the space B to the random elements Y or Z, i.e.

$$\mathbb{E} f(Y_n) \to \mathbb{E} f(Y)$$

for any continuous and bounded $f : B \to \mathbb{R}$ and similarly with Z_n, the weak convergence of Z_n to Z being understood in the net sense.

Define triangular array with multidimensional index as

$$(X_{n,k}, \ 1 \leq k \leq k_n), \ n \in \mathbb{N}^d,$$

where for each n the random variables $X_{n,k}$ are independent. The expression k_n is the element from \mathbb{N}^d with multidimensional index: $k_n = (k^1_n, \ldots, k^n_n)$.

4
Assume that $E X_{n,k} = 0$ and that $\sigma_{n,k}^2 := E X_{n,k}^2 < \infty$, for $1 \leq k \leq k_n$, $n \in \mathbb{N}^d$. Define for each $1 \leq k \leq k_n$

$$S_n(k) := \sum_{j \leq k} X_{n,j}, \quad b_n(k) := \sum_{j \leq k} \sigma_{n,j}^2.$$

We will require that the sum of all variances is one, i.e. $b_n(k_n) = 1$ and that $m(k_n) \to \infty$, as $m(n) \to \infty$. If $\pi(k) = 0$, let $S_n(k) = 0$, $b_n(k) = 0$. For $i = 1, \ldots, d$ introduce the notations

$$b_i(k) := b_n(k_1^{i-1}, k_i, k_{i+1}^d), \quad \Delta b_i(k) := b_i(k) - b_i(k - 1).$$

Now we can define our non-uniform grid. For $1 \leq j \leq k_n$, let

$$R_{n,j} := \left[b_1(j_1 - 1), b_1(j_1) \right] \times \cdots \times \left[b_d(j_d - 1), b_d(j_d) \right].$$

Due to definition of $b_i(k)$ we get $R_{n,j} \cap R_{n,k} = \emptyset$, if $k \neq j$, $\cup_{j \leq k_n} R_{n,j} = [0,1]^d$ and $\sum_{j \leq k_n} |R_{n,j}| = 1$.

Remark 1 Thus defined, our non-uniform grid becomes the usual uniform grid in the case of i.i.d. variables. The triangular array then is defined as $X_{n,k} = \pi(n)^{-1/2} X_k$, where $\{X_k, 1 \leq k \leq k_n\}$ is an i.i.d. random field. In this case we have $b_i(k) = k/n_i$.

Now define the summation process on such grid as

$$\Xi_n(t) = \sum_{1 \leq j \leq n} |R_{n,j}|^{-1} |R_{n,j} \cap [0,t]| X_{n,j}.$$

In section 3.2 we discuss in detail the construction of the random field Ξ_n and propose some useful representations.

Remark 2 In case $d = 1$, the process Ξ_n coincides with polygonal line process proposed by Prohorov.

Theorem 1 For $0 < \alpha < 1/2$, set $p(\alpha) := 1/(1/2 - \alpha)$. If

$$\max_{1 \leq i \leq d} \max_{1 \leq l \leq k_n^i} \Delta b_i(k_l) \to 0, \text{ as } m(n) \to \infty$$

and for some $q > p(\alpha)$

$$\lim_{m(n) \to \infty} \sum_{1 \leq k \leq k_n} \sigma_{n,k}^{-2q} \mathbb{E} |X_{n,k}|^q = 0,$$

then the net $\{\Xi_n, n \in \mathbb{N}\}$ is asymptotically tight in the space $H_\alpha([0,1]^d)$.

Remark 3 For $d = 1$, condition (8) ensures infinitesimal negligibility and (9) reduces to (1).
For each \(k \leq n \), define
\[
B(k) = (b_1(k_1), \ldots, b_d(k_d)).
\]
Note that \(B(k) \in [0, 1]^d \). Now for each \(t \in [0, 1]^d \), define
\[
\mu_n(t) = \sum_{1 \leq k \leq n} I\{B(k) \in [0, t]\} \sigma^2_n, k.
\]

Assumption 1 There exists a function \(\mu : [0, 1]^d \to \mathbb{R} \) such that
\[
\forall t \in [0, 1]^d, \lim_{n(n) \to \infty} \mu_n(t) = \mu(t). \tag{10}
\]

Theorem 2 Define \(g : [0, 1]^d \times [0, 1]^d \to \mathbb{R} \) as \(g(t, s) := \mu(t \wedge s) \). Then \(g \) is symmetric and positive definite.

In this paper positive definiteness is to be understood as in [4], that is \(g \) is positive definite if for every integer \(n \geq 1 \), every \(n \)-uple of reals \(x_1, \ldots, x_n \) and every \(n \)-uple of vectors \(t_1, \ldots, t_n \) of \([0, 1]^d \), \(\sum^n j=1 x_i g(t_i, t_j) x_j \) is non negative (in other words, the quadratic form with matrix \([g(t_i, t_j)]\) is positive semi-definite). When \(g \) is positive definite, the existence of zero mean Gaussian process \(\{G(t), t \in [0, 1]^d\} \) with covariance function \(\mathbb{E} G(t) G(s) = \mu(t \wedge s) \) is a classical result (see for example [4] theorem 1.2.1 in chapter 5).

Remark 4 For the standard Wiener sheet \(\mathbb{E} W(t) W(s) = \pi(t \wedge s) \).

Theorem 3 If (8) and (10) holds and for every \(\varepsilon > 0 \)
\[
\lim_{n(n) \to \infty} \sum_{1 \leq k \leq n} \mathbb{E} X^2_n, k I\{|X_n, k| \geq \varepsilon \} = 0, \tag{11}
\]
then the finite dimensional distributions of process \(\{\Xi_n(t), t \in [0, 1]^d\} \) converges to the finite dimensional distributions of the process \(\{G(t), t \in [0, 1]^d\} \).

Then the functional central limit theorem is stated as a corollary.

Corollary 1 If (8), (9) and (10) hold, then
\[
\Xi_n \xrightarrow{H^0([0, 1]^d)} G. \tag{12}
\]

The following examples may be useful to discuss conditions (8), (9) and (10).

Example 1 For \(n = (n, n) \) and \(k_n = (2n, 2n) \) take \(X_{n, k} = a_{n, k} Y_k \), with \(\{Y_k, k \leq k_n\} \) i.i.d. random variables with standard normal distribution, and
\[
a_{n, k}^2 = \begin{cases} \frac{1}{10n}, & \text{for } k \leq (n, n) \\ \frac{3}{10n^2}, & \text{otherwise}. \end{cases}
\]

Thus defined triangular array satisfies conditions (8), (9) and (10). But
\[
\mu_n(t) \rightarrow \mu(t) := \frac{1}{10} \left(\frac{5}{2} t_1 \wedge 1 \right) \left(\frac{5}{2} t_2 \wedge 1 \right) + \frac{(5t_1 - 2) \vee 0}{10} \left(\frac{5}{2} t_2 \wedge 1 \right) + \frac{(5t_2 - 2) \vee 0}{10} \left(\frac{5}{2} t_1 \wedge 1 \right) + \frac{(5t_1 - 2) \vee 0}{30} \left((5t_2 - 2) \vee 0 \right) \left((5t_2 - 2) \vee 0 \right)
\]
Example 2. For \(n = (n, n) \) and \(k_n = (n, n) \) take \(X_{n,k} = a_{n,k} Y_k \), with \(\{ Y_k, k \leq k_n \} \) i.i.d. random variables with standard normal distribution, and

\[
b^2_{n,k} = \begin{cases} \pi(n), & \text{for } n = (2l - 1, 2l - 1), \ l \in \mathbb{N} \\ a^2_{n,k}, & \text{for } n = (2l, 2l), \ l \in \mathbb{N} \end{cases}
\]

Thus defined triangular array satisfies conditions (8), (9) but not (10).

From these examples we see that the weak limit of \(\Xi_n \) is not necessarily Wiener sheet and though process \(\Xi_n \) can be tight, this does not ensure that finite dimensional distributions converge. This contrasts with the one dimensional case. It should be noted that both examples violate the conditions for \(\xi_n \) in Goldie and Greenwood. For the triangular arrays satisfying similar conditions as in Bickel and Wichura [1], condition (10) is always satisfied.

Corollary 2. Let \(\sigma^2_{n,k} = \pi(a_{n,k}) \), where \(\{ a_{n,k} = (a^1_{n,k}, \ldots, a^d_{n,k}) \} \) is a triangular array of real vectors satisfying the following conditions for each \(i = 1, \ldots, d \) and for all \(k \leq k_n \).

1. \(\sum_{k=1}^{k_n} a^i_{n,k} = 1 \) with \(a^i_{n,k} > 0 \).
2. \(\max_{1 \leq k \leq k_n} a^i_{n,k} \to 0, \) as \(m(n) \to \infty. \)

Then condition (9) is sufficient for convergence (12) and \(G(t) \) is simply \(W(t) \).

From this corollary it clearly follows that our result is a generalisation of i.i.d. case, since in i.i.d. case with triangular array defined as in remark 1 we have \(\sigma^2_{n,k} = \pi(n) \).

The moment conditions for tightness can be relaxed. Introduce for every \(\tau > 0 \) truncated random variables:

\[
X_{n,k,\tau} := X_{n,k} 1\{|X_{n,k}| \leq \tau \sigma^2_{n,k}\}
\]

Theorem 4. Suppose condition (8) and following conditions hold:

1. For every \(\varepsilon > 0 \),

\[
\lim_{m(n) \to \infty} \sum_{1 \leq k \leq k_n} P(|X_{n,k}| \geq \varepsilon \sigma^2_{n,k}) = 0. \tag{13}
\]

2. For every \(\varepsilon > 0 \),

\[
\lim_{m(n) \to \infty} \sum_{1 \leq k \leq k_n} E X^2_{n,k} 1\{|X_{n,k}| \geq \varepsilon\} = 0. \tag{14}
\]

3. For every \(\varepsilon > 0 \) and some \(q > 1/(1/2 - \alpha) \),

\[
\lim_{\tau \to 0} \lim_{m(n) \to \infty} \sum_{1 \leq k \leq k_n} \sigma^{-2q}_{n,k} E |X_{n,k,\tau}|^q = 0. \tag{15}
\]

Then the net \(\{ \Xi_n, n \in \mathbb{N} \} \) is tight in the space \(H_\alpha^0([0,1]^d) \).
3 Background and tools

3.1 Hölder spaces and tightness criteria

We present briefly here some structure property of \(H^{\alpha}_0([0,1]^d) \) which is needed to obtain a tightness criterion. For more details, the reader is referred to [6] and [8]. Set

\[W_j = \{k2^{-j}; 0 \leq k \leq 2^j \}^d, \quad j = 0, 1, 2, \ldots \]

and

\[V_0 := W_0, \quad V_j := W_j \setminus W_{j-1}, \quad j \geq 1, \]

so \(V_j \) is the set of dyadic points \(v = (k_12^{-j}, \ldots, k_d2^{-j}) \) in \(W_j \) with at least one \(k_i \) odd. Define

\[\lambda_0, \nu(x) = x(v), \quad v \in V_0; \]
\[\lambda_j, \nu(x) = x(v) - \frac{1}{2}(x(v^-) + x(v^+)), \quad v \in V_j, \quad j \geq 1, \]

where \(v^- \) and \(v^+ \) are defined as follows. Each \(v \in V_j \) admits a unique representation \(v = (v_1, \ldots, v_d) \) with \(v_i = k_i/2^j, (1 \leq i \leq d) \). The points \(v^- = (v_1^-, \ldots, v_d^-) \) and \(v^+ = (v_1^+, \ldots, v_d^+) \) are defined by

\[v_i^- = \begin{cases} v_i - 2^{-j}, & \text{if } k_i \text{ is odd;} \\ v_i, & \text{if } k_i \text{ is even} \end{cases} \]
\[v_i^+ = \begin{cases} v_i + 2^{-j}, & \text{if } k_i \text{ is odd;} \\ v_i, & \text{if } k_i \text{ is even}. \end{cases} \]

We will use the following tightness criteria.

Theorem 5 Let \(\{\zeta_n, n \in \mathbb{N}^d\} \) be a net of random elements with values in the space \(H^{\alpha}_0([0,1]^d) \). Assume that the following conditions are satisfied.

i) \(\lim_{a \to \infty} \sup_n P(\sup_{t \in [0,1]^d} |\zeta_n(t)| > a) = 0 \).

ii) For each \(\varepsilon > 0 \)

\[\lim_{J \to \infty} \limsup_{m(n) \to \infty} P(\sup_{j \geq J} \max_{v \in V_j} |\lambda_j, \nu(\zeta_n)| > \varepsilon) = 0. \]

Then the net \(\{\zeta_n, n \in \mathbb{N}^d\} \) is asymptotically tight in the space \(H^{\alpha}_0([0,1]^d) \).

Proof. The proof is the same as in theorem 2 in [12].

3.2 Summation process

For \(t \in [0,1] \) and \(t \in [0,1]^d \), write

\[u_i(t) := \max\{j \geq 0 : b_i(j) \leq t\}, \quad U(t) := (u_1(t), \ldots, u_d(t)). \]

Note that \(U(t) \in \mathbb{N}^d \). Recalling (5), write

\[\Delta B(k) := (\Delta b_1(k_1), \ldots, \Delta b_d(k_d)). \]

In [11] it was shown that process \(\xi_n \) defined by (2) has a certain barycentric representation. We will prove that similar representation exists for process \(\Xi_n \).
Proposition 1 Let us write any \(t \in [0,1]^d \) as the barycenter of the \(2^d \) vertices
\[
V(u) := B(U(t)) + u \Delta B(U(t) + 1), \quad u \in \{0,1\}^d,
\]
of the rectangle \(R_{n,U(t)+1} \) with some weights \(w(u) \geq 0 \) depending on \(t \), i.e.,
\[
t = \sum_{u \in \{0,1\}^d} w(u)V(u), \quad \text{where} \quad \sum_{u \in \{0,1\}^d} w(u) = 1. \tag{17}
\]

Using this representation, define the random field \(\Xi_n^\ast(t) \) by
\[
\Xi_n^\ast(t) = \sum_{u \in \{0,1\}^d} w(u)S_n(U(t) + u), \quad t \in [0,1]^d.
\]

Then \(\Xi_n^\ast \) coincides with the summation process defined by (7).

Proof. For fixed \(n \geq 1 \in \mathbb{N}^d \), any \(t \neq 0 \in [0,1]^d \) belongs to a unique rectangle \(R_{n,j} \) defined by (6), namely \(R_{n,U(t)+1} \). Then the \(2^d \) vertices of this rectangle are clearly the points \(V(u) \) given by (16). Put
\[
s = \frac{t - B(U(t))}{\Delta B(U(t) + 1)}, \quad \text{whence} \quad t = B(U(t)) + s \Delta B(U(t) + 1), \tag{18}
\]
recalling that in this formula the division of vector is componentwise.

For any non empty subset \(L \) of \(\{1, \ldots, d\} \), we denote by \(\{0,1\}^L \) the set of binary vectors indexed by \(L \). In particular \(\{0,1\}^d \) is an abridged notation for \(\{0,1\}^{\{1, \ldots, d\}} \). Now define the non negative weights
\[
w_L(u) := \prod_{l \in L} s_l^u(1 - s_l)^{1-u_l}, \quad u \in \{0,1\}^L
\]
and when \(L = \{1, \ldots, d\} \), simplify this notation in \(w(u) \). For fixed \(L \), the sum of all these weights is one since
\[
\sum_{u \in \{0,1\}^L} w_L(u) = \prod_{l \in L} (s_l + (1 - s_l)) = 1. \tag{19}
\]
The special case \(L = \{1, \ldots, d\} \) gives the second equality in (17). From (19) we immediately deduce that for any \(K \) non empty and strictly included in \(\{1, \ldots, d\} \), with \(L := \{1, \ldots, d\} \setminus K \),
\[
\sum_{u \in \{0,1\}^d, \forall k \in K, u_k = 1} w(u) = \prod_{k \in K} s_k \sum_{u \in \{0,1\}^L} s_l^u(1 - s_l)^{1-u_l} = \prod_{k \in K} s_k. \tag{20}
\]

Formula (20) remains obviously valid in the case where \(K = \{1, \ldots, d\} \).

Now let us observe that
\[
\sum_{u \in \{0,1\}^d} w(u)V(u) = \sum_{u \in \{0,1\}^d} w(u) \left(B(U(t)) + u \Delta B(U(t) + 1) \right)
\]
\[
= B(U(t)) + \Delta B(U(t) + 1) \sum_{u \in \{0,1\}^d} w(u)u.
\]
Comparing with the expression of t given by (18), we see that the first equality in (17) will be established if we check that

\[s' := \sum_{u \in \{0,1\}^d} w(u) u = s. \quad (21) \]

This is easily seen componentwise using (20) because for any fixed $l \in \{1, \ldots, d\}$,

\[s'_l = \sum_{u \in \{0,1\}^d, u_l = 1} w(u) = \prod_{k \in \{l\}} s_k = s_l. \]

Next we check that $\Xi_n(t) = \Xi_n^*(t)$ for every $t \in [0,1]^d$. Introduce the notation

\[D_{t,u} := \mathbb{N}^d \cap ([0,U(t) + u] \setminus [0,U(t)]). \]

Then we have

\[\Xi_n^*(t) = \sum_{u \in \{0,1\}^d} w(u) (S_n(U(t)) + (S_n(U(t) + u) - S_n(U(t))) = S_n(U(t)) + \sum_{u \in \{0,1\}^d} w(u) \sum_{i \in D_{t,u}} X_{n,i}. \]

Now in view of (7), the proof of $\Xi_n(t) = \Xi_n^*(t)$ reduces clearly to that of

\[\sum_{u \in \{0,1\}^d} w(u) \sum_{i \in D_{t,u}} X_{n,i} = \sum_{i \in I} |R_{n,i}|^{-1} |R_{n,i} \cap [0,t]| X_{n,i}, \quad (22) \]

where

\[I := \{ i \leq k_n; \forall k \in \{1, \ldots, d\}, i_k \leq u_k(t_k) + 1 \text{ and } \exists l \in \{1, \ldots, d\}, i_l = u_k(t_k) + 1 \}. \quad (23) \]

Clearly I is the union of all $D_{t,u}$, $u \in \{0,1\}^d$, so we can rewrite the left hand side of (22) under the form $\sum_{i \in I} a_i X_i$. For $i \in I$, put

\[K(i) := \{ k \in \{1, \ldots, d\}; i_k = u_k(t_k) + 1 \}. \quad (24) \]

Then observe that for $i \in I$, the u's such that $i \in D_{t,u}$ are exactly those which satisfy $u_k = 1$ for every $k \in K(i)$. Using (20), this gives

\[\forall i \in I, \quad a_i = \sum_{u \in \{0,1\}^d, \forall k \in K(i), u_k = 1} w(u) = \prod_{k \in K(i)} s_k. \quad (25) \]

On the other hand we have for every $i \in I$,

\[|R_{n,i} \cap [0,t]| = \prod_{k \in K(i)} (t_k - b_k(u_k(t_k))) \prod_{k \in K(i)} \Delta b_k(u_k(t_k) + 1) = \pi(\Delta B(U(t) + 1)) \prod_{k \in K(i)} s_k = a_i \pi(\Delta B(U(t) + 1)) \quad (26) \]
As $|R_{n,i}|^{-1} = \pi(\Delta B(U(t) + 1))$, (22) follows and the proof is complete.

As in [11] introduce notation
\[
\Delta^{(j)}_k S_n(i) = S_n((i_1, \ldots, i_{j-1}, k, i_{j+1}, \ldots, i_d)) - S_n(i_1, \ldots, i_{j-1}, k-1, i_{j+1}, \ldots, i_d)
\]
(27)

Clearly the operators $\Delta^{(j)}_k$ commute for different j's. Note that when applied to $S_n(i)$, $\Delta^{(j)}_k$ is really a difference operator acting on the j-th argument of a function with d arguments. Also since k defines the differencing, $\Delta^{(j)}_k S_n(i)$ does not depend on i_j, and the following useful representation holds for $1 \leq i \leq k_n$,

\[
X_{n,i} = \Delta^{(i_1)}_1 \ldots \Delta^{(i_d)}_d S_n(i).
\]
(28)

Recalling the notations (23), (24) and formula (26), we have
\[
\Xi_n(t) = S_n(U(t)) + \sum_{i \in I} |R_{n,i}|^{-1} |R_{n,i} \cap [0,t]| X_{n,i}
\]
\[
= S_n(U(t)) + \sum_{i \in I} \left(\prod_{k \in K(i)} s_k \right) X_{n,i}.
\]

This can be recast as
\[
\Xi_n(t) = S_n(U(t)) + \sum_{l=1}^d T_l(t)
\]
(29)

with
\[
T_l(t) := \sum_{i \in I, \exists K(i) = l} \left(\prod_{k \in K(i)} s_k \right) X_{n,i}.
\]
(30)

Now we observe that
\[
T_l(t) = \sum_{K \subset \{1, \ldots, d\}} \sum_{\exists K(i) = l} \left(\prod_{k \in K} s_k \right) X_{n,i} = \sum_{K \subset \{1, \ldots, d\}} \left(\prod_{k \in K} s_k \right) \sum_{i \in I, K(i) = K} X_{n,i}.
\]

It should be clear that
\[
\sum_{i \in I, K(i) = K} X_{n,i} = \left(\prod_{k \in K} \Delta^{(i_k)}_{u_k(t_k)+1} \right) S_n(U(t)),
\]
where the symbol Π is intended as the composition product of differences operators. Recalling that $s_k = (t_k - b_k(u_k(t_k)))/\Delta b_k(u_k(t_k) + 1)$, this leads to
\[
T_l(t) = \sum_{K \subset \{1, \ldots, d\}} \left(\prod_{k \in K} \frac{t_k - b_k(u_k)}{\Delta b_k(u_k(t_k) + 1)} \right) \left(\prod_{k \in K} \Delta^{(i_k)}_{u_k(t_k)+1} \right) S_n(U(t)).
\]
(31)

Finally we obtain the representation
\[
\Xi_n(t) = S_n(U(t)) + \sum_{l=1}^d \sum_{1 \leq i_1 < i_2 < \cdots < i_l \leq d} \left(\prod_{k=1}^l \frac{t_{i_k} - b_{i_k}(u_{i_k})}{\Delta b_{i_k}(u_{i_k}(t_{i_k}) + 1)} \right) \left(\prod_{k=1}^l \Delta^{(i_k)}_{u_{i_k}(t_{i_k})+1} \right) S_n(U(t)).
\]
(32)
3.3 Rosenthal and Doob inequalities

When applied to our triangular array, Rosenthal inequality for independent non-identically distributed random variables reads

$$E \left| \sum_{1 \leq j \leq n} X_{n,j} \right|^q \leq c \left(\left(\sum_{1 \leq j \leq n} \sigma_{n,j}^2 \right)^{q/2} + \sum_{1 \leq j \leq n} E |X_{n,j}|^q \right),$$ \hspace{1cm} (33)

for every $q \geq 2$, with a constant c depending on q only.

As in [11] we can also extend Doob inequality for independent non-identically distributed variables

$$E \max_{1 \leq k \leq k_n} |S_n(k)|^q \leq \left(\frac{p}{p - 1} \right)^{dq} E |S_n(k)|^q,$$ \hspace{1cm} (34)

for $q > 1$.

4 Finite-dimensional distributions

4.1 Existence of process $G(t)$

We have

$$g(t, s) = \lim_{m(n) \to \infty} \mu_n(t \wedge s).$$

Take $p \in \mathbb{N}$, $v_1, \ldots, v_p \in \mathbb{R}$ and $t_1, \ldots, t_p \in [0, 1]^d$. Note that for any $t, s, r \in [0, 1]^d$ we have

$$1\{r \in [t \wedge s] \} = 1\{r \in [0,t] \cap [0,s] \} = 1\{r \in [0,t] \}1\{r \in [0,s] \}. \hspace{1cm} (35)$$

Then

$$\sum_{i=1}^{p} \sum_{j=1}^{p} v_i v_j \sum_{k \leq k_n} 1\{B_n(k) \in [0, t_i \wedge t_j] \} \sigma_{n,k}^2 = \sum_{k \leq k_n} \sigma_{n,k}^2 \left(\sum_{i=1}^{p} v_i 1\{B_n(k) \in [0, t_i] \} \right)^2 \geq 0.$$

Since this holds for each n, taking the limit as $m(n) \to \infty$ gives the positive definiteness of $g(t, s)$.

4.2 Proof of theorem 3

Consider the jump process defined as

$$\zeta_n(t) = \sum_{1 \leq k \leq k_n} 1\{B(k) \in [0, t] \} X_{n,k}.$$

Now for each t

$$|\Xi_n(t) - \zeta_n(t)| = \sum_{1 \leq k \leq k_n} \alpha_{n,k} X_{n,k}.$$

12
where
\[\alpha_{n,k} = \frac{1}{|R_{n,k}|} \mathbf{1}\{B(k) \in [0,t]\}. \]

Now \(|\alpha_{n,k}| < 1 \), and vanishes if \(R_{n,k} \subset [0,t] \), or \(R_{n,k} \cap [0,t] = \emptyset \). Actually \(\alpha_{n,k} \neq 0 \) if and only if \(k \in I \), where \(I \) is defined by (23). Thus

\[\mathbf{E}[\Xi_n(t) - \zeta_n(t)]^2 = \sum_{k \in I} \alpha_{n,k} \mathbf{1}\{B(k) \in [0,t]\} \]

Using (8) we get

\[|\Xi_n(t) - \zeta_n(t)| \xrightarrow{P} 0, \text{ as } m(n) \to \infty. \]

We will concentrate now on finite-dimensional distributions of \(\zeta_n \).

Fix \(t_1, \ldots, t_r \in [0,1]^d \) and \(v_1, \ldots, v_r \) real, set

\[V_n = \sum_{p=1}^{r} v_j \zeta_n(t_p) = \sum_{1 \leq k \leq k_n} \alpha_{n,k} X_{n,k}, \]

where

\[\alpha_{n,k} = \sum_{p=1}^{r} v_p \mathbf{1}\{B(k) \in [0,t_p]\}. \]

Now using (35) we get

\[b_n := \mathbf{E} V_n^2 = \sum_{k \leq k_n} \alpha_{n,k}^2 \mathbf{1}\{B(k) \in [0,t]\} \]

Letting \(m(n) \) to infinity and using assumption 1, we obtain

\[b_n \xrightarrow{m(n) \to \infty} \sum_{p} \sum_{q} v_p v_q v_p \mu(t_p \land t_q) = \mathbf{E} \left(\sum_{p} v_p G(t_p) \right)^2 =: b. \]

If \(b = 0 \), then \(V_n \) converges to zero in distribution since \(\mathbf{E} V_n^2 \) tends to zero. In this special case we also have \(\sum_{p} v_p G(t_p) = 0 \) almost surely, thus the convergence of finite dimensional distributions holds.

Assume now, that \(b > 0 \). For convenience put \(Y_{n,k} = \alpha_{n,k} X_{n,k} \) and \(v = \sum_{p} \sum_{q} v_p v_q \). Since

\[Y_{n,k} \leq v X_{n,k}, \]

\(Y_{n,k} \) satisfies the condition of infinitesimal negligibility. For \(m(n) \) large enough to have \(b_n > b/2 \), we get

\[\frac{1}{\mathbf{E} V_n^2} \sum_{1 \leq k \leq k_n} \mathbf{E} (Y_{n,k}^2 \mathbf{1}\{|Y_{n,k}|^2 > \varepsilon^2 \mathbf{E} V_n^2\}) \leq \frac{2v}{b} \sum_{1 \leq k \leq k_n} \mathbf{E} (X_{n,k}^2 \mathbf{1}\{|X_{n,k}|^2 > \frac{b\varepsilon^2}{2v}\}). \]

Thus Lindeberg condition for \(V_n \) is satisfied and that gives us the convergence of finite dimensional distributions.
5 Tightness results

5.1 Proof of theorem 1

We will use theorem 5. Using Doob inequality we have

\[P\left(\sup_{t \in [0,1]} |\Xi_n(t)| > a \right) = P\left(\max_{k \leq k_n} |S_n(k)| > a \right) \]
\[\leq a^{-2} E S_n(k_n)^2 = a^{-2} \to 0, \text{ as } a \to \infty, \]

thus condition (i) is satisfied. For proving (ii) note that due to the definition of \(\nu \) and \(\nu^- \) we can write

\[\nu_n(v) - \nu_n(v^-) = \sum_{i=1}^l \left(\nu_n(v - w_{i-1}) - \nu_n(v - w_i) \right) \]

where \(l \) is the number of odd coordinates in \(2^j \nu, \) \(\nu_0 = 0, \) \(\nu_1 \) has \(2^{-j} \) in the first \(i \) odd coordinates of \(2^j \nu, \) and zero in other coordinates. So the condition (ii) holds provided one proves for every \(\epsilon > 0 \)

\[\lim_{J \to \infty} \limsup_{n \to \infty} \Pi(J, n; \epsilon) = 0, \]

where

\[\Pi(J, n; \epsilon) := P\left(\sup_{j \geq J} \max_{0 \leq \ell \leq 2^j} |\nu_n(r, s_\ell) - \nu_n(r^-, s_\ell)| > \epsilon \right), \]

with \(D_j = \{ 2(l - 1)2^{-j}; 1 \leq l \leq 2^{j-1} \}, \) \(r^- = r - 2^{-j}, \) \(s_\ell = (l_2, \ldots, l_d), 2^j = (2^1, \ldots, 2^j) \) (vector of dimension \(d - 1 \)) and \(s_\ell = t \ell 2^{-j}. \)

Denote by \(\nu = (r, s_\ell), \) and \(\nu^- = (r^-, s_\ell). \) From (30) we have

\[\nu_n(r, s_\ell) - \nu_n(r^-, s_\ell) = S_n(U(\nu)) - S_n(U(\nu^-)) + \sum_{i=1}^d (T_i(\nu) - T_i(\nu^-)). \]

To estimate this increment we discuss according to following configurations

Case 1. \(u_1(r) = u_1(r^-). \) Consider first the increment \(T_1(\nu) - T_1(\nu^-) \) and note that by (31) with \(l = 1, \)

\[T_1(\nu) = \sum_{1 \leq k \leq d} \frac{v_k - b_k(u_k(v_k))}{\Delta b_k(u_k(v_k) + 1)} \Delta u_k(v_k + 1) S_n(U(\nu)). \]

Because \(v_{2,d} = v_{2,d}^- \) and \(U(\nu) = U(\nu^-), \) all terms indexed by \(k \geq 2 \) disappear in difference \(T_1(\nu) - T_1(\nu^-). \) This leads to the factorisation

\[T_1(\nu) - T_1(\nu^-) = \frac{r - r^-}{\Delta u_1(r) + 1} \Delta u_1(r) S_n(U(\nu)). \]

(38)

For \(l \geq 2, \) \(T_l(\nu) \) is expressed by (31) as

\[T_l(\nu) = \sum_{1 \leq i_1 < \cdots < i_l \leq d} \frac{v_{i_1} - b_{i_1}(u_{i_1}(v_{i_1}))}{\Delta b_{i_1}(u_{i_1}(v_{i_1}) + 1)} \cdots \frac{v_{i_l} - b_{i_l}(u_{i_l}(v_{i_l}))}{\Delta b_{i_l}(u_{i_l}(v_{i_l}) + 1)} \Delta u_{i_1}(v_{i_1} + 1) \cdots \Delta u_{i_l}(v_{i_l} + 1) S_n(U(\nu)). \]
In the difference $T_1(v) - T_1(v^-)$ all the terms for which $i_1 \geq 2$ again disappear and we obtain

$$T_1(v) - T_1(v^-) = \frac{r - r^-}{\Delta b_1(u_1(r) + 1)} \sum_{1 < i_2 < \cdots < i_d \leq d} \frac{v_{i_2} - b_{i_2}(u_{i_2}(v_{i_2}))}{\Delta b_1(u_{i_1}(v_{i_1}) + 1)} \cdots \frac{v_{i_d} - b_{i_d}(u_{i_d}(v_{i_d}))}{\Delta b_1(u_{i_1}(v_{i_1}) + 1)}$$

$$\Delta^{(1)}_{u_1(r)+1} \Delta^{(i_2)}_{u_{i_2}(v_{i_2})+1} \cdots \Delta^{(u_i)}_{u_i(v_i)+i} S_n(U(v)).$$

(39)

Since $u_1(r) = u_1(r^-)$, we have $b_1(u_1(r)) \leq r < r^- < b_1(u_1(r) + 1)$, thus

$$\frac{r - r^-}{\Delta b_1(u_1(r) + 1)} \leq \left(\frac{r - r^-}{\Delta b_1(u_1(r) + 1)} \right)^\alpha.$$

Now

$$\frac{v_{i_2} - b_{i_2}(u_{i_2}(v_{i_2}))}{\Delta b_1(u_{i_1}(v_{i_1}) + 1)} \cdots \frac{v_{i_d} - b_{i_d}(u_{i_d}(v_{i_d}))}{\Delta b_1(u_{i_1}(v_{i_1}) + 1)} < 1$$

and

$$|\Delta^{(1)}_{u_1(r)+1} \Delta^{(i_2)}_{u_{i_2}(v_{i_2})+1} \cdots \Delta^{(u_i)}_{u_i(v_i)+i} S_n(U(v))| = |\Delta^{(1)}_{u_1(r)+1} \sum_{i \in I} \varepsilon_i S_n(i)|$$

$$\leq \sum_{i \in I} |\Delta^{(1)}_{u_1(r)+1} S_n(i)|,$$

(40)

where $\varepsilon_i = \pm 1$ and I is some appropriate subset of $[0, n] \cap \mathbb{N}^{d}$ with 2^{d-1} elements. Denote for convenience

$$Z_n = \max_{1 \leq k \leq k_n} \frac{|\Delta^{(1)}_{k_1} S_n(k)|}{(\Delta b_1(k_1))^\alpha}.$$

(41)

Now noting that $r - r^- = 2^{-j}$ and $\Delta b_1(k_1)$ depends only on k_1, we obtain for $l \geq 2$

$$|T_l(u') - T_l(u)| \leq 2^{-ja} \left(\frac{d - 1}{l - 1} \right)^{2^{l-1}} Z_n.$$

Thus

$$|\Xi_n(v) - \Xi_n(v^-)| \leq \sum_{l=1}^{d} 2^{-ja} \left(\frac{d - 1}{l - 1} \right)^{2^{l-1}} Z_n = 3^{d-1} 2^{-ja} Z_n$$

(42)

Case 2. $u_1(r) = u_1(r^-) + 1$. In this case we have $b_1(u_1(r^-)) \leq r^- < b_1(u_1(r)) \leq r$. Using previous definitions we can write

$$|\Xi_n(v) - \Xi_n(v^-)| \leq |\Xi_n(v) - \Xi_n(b_1(u_1(r)), s_t)| + |\Xi_n(b_1(u_1(r)), s_t) - \Xi_n(v^-)|.$$

Now

$$\frac{r - b_1(u_1(r))}{\Delta b_1(u_1(r) + 1)} \leq \left(\frac{r - b_1(u_1(r))}{\Delta b_1(u_1(r) + 1)} \right)^{\alpha} \leq \frac{2^{-ja}}{(\Delta b_1(u_1(r) + 1))^\alpha}$$

and similarly

$$\frac{b_1(u_1(r)) - r^-}{\Delta b_1(u_1(r^-) + 1)} \leq \frac{2^{-ja}}{(\Delta b_1(u_1(r^-) + 1))^\alpha}.$$
Combining these inequalities with (38) and (39) we get as in (42)

\[|\Xi_n(v) - \Xi_n(v^-)| \leq 2 \cdot 3^{d-1} 2^{-j_0} Z_n. \]

Case 3. \(u_1(r) > u_1(r^-) + 1 \). Put

\[u = (b_1(u_1(r)), s_\ell), \quad u^- = (b_1(u_1(r^-)) + 1, s_\ell) \]

and

\[\psi_n(r, r^-) = \max_{k_{2, d} \leq k_{n, 2, d}} \left| \sum_{i=u_1(r^-)+2}^{u_1(r)} \Delta^{(1)}_i S_n((i, k_{2, d})) \right|. \] (43)

Then

\[|\Xi_n(v) - \Xi_n(v^-)| \leq |\Xi_n(v) - \Xi_n(u)| + |\Xi_n(u) - \Xi_n(u^-)| + |\Xi_n(u^-) - \Xi_n(v^-)| \]

Since \(U(u)_{2, d} = U(u^-)_{2, d} = U(v)_{2, d} \), we have

\[\Xi_n(u) = S_n(U(u)) + \sum_{l=1}^{d-1} \sum_{2 \leq i_1 < i_2 < \cdots < i_l \leq d} \left(\prod_{k=1}^l \Delta b_{i_k} u_{i_k}(v_{i_k}) \right) \left(\prod_{k=1}^l \Delta^{(1)} u_{i_k}(v_{i_k}) + 1 \right) S_n(U(u)) \]

and similar representation holds for \(\Xi_n(u^-) \). Since

\[S_n(U(u)) - S_n(U(u^-)) = \sum_{i=u_1(r^-)+2}^{u_1(r)} \Delta^{(1)}_i S_n((i, U(s_\ell))), \]

similar to (40) and (42) we get

\[|\Xi_n(u) - \Xi_n(u^-)| \leq \psi_n(r, r^-) \sum_{l=0}^{d-1} 2^l \leq 3^{d-1} \psi_n(r, r^-). \]

We can bound \(|\Xi_n(v) - \Xi_n(u)| \) and \(|\Xi_n(u^-) - \Xi_n(v)| \) as in case 2. Thus we get

\[|\Xi_n(r, s_\ell) - \Xi_n(r^-, s_\ell)| \leq 3^{d-1} \psi_n(r, r^-) + 2 \cdot 3^{d-1} 2^{-j_0} Z_n. \] (44)

Substituting this inequality into (37) we get that

\[\Pi_1(J, n; \varepsilon) \leq \Pi_1(J, n; \varepsilon/(2 \cdot 3^{d-1})) + \Pi_2(n; \varepsilon/(4 \cdot 3^{d-1})) \]

where

\[\Pi_1(J, n; \varepsilon) = P\left(Z_n > \varepsilon \right) \] (45)

and

\[\Pi_2(J, n; \varepsilon) = P\left(\sup_{j \geq J} 2^{-\alpha_j} \max_{r \in D_j} |\psi_n(r, r^-) > \varepsilon \right). \] (46)
Thus (36) will hold if
\[
\lim_{J \to \infty} \limsup_{n \to \infty} \Pi_1(J, n; \varepsilon) = 0, \quad (47)
\]
\[
\lim_{J \to \infty} \limsup_{n \to \infty} \Pi_2(J, n; \varepsilon) = 0. \quad (48)
\]

\textbf{Proof of (47).} Using Markov and Doob inequalities for \(q > \frac{1}{1/2 - \alpha} \)
\[
P\left(Z_n > \varepsilon\right) \leq \sum_{k=1}^{k_1} P\left(\max_{k \leq k_n, 2 \leq d} |\Delta_S^{(1)}(k)| > \varepsilon (\Delta b_1(k))^\alpha\right)
\]
\[
\leq \sum_{k=1}^{k_1} \varepsilon^{-q}(\Delta b_1(k))^{-q\alpha} E\left(\max_{k \leq k_n, 2 \leq d} |\Delta_S^{(1)}(k)|\right)^q
\]
\[
\leq \sum_{k=1}^{k_1} \varepsilon^{-q}(\Delta b_1(k))^{-q\alpha} E|\Delta_S^{(1)}(k_n)|^q.
\]

By applying the Rosenthal inequality we get
\[
P\left(Z_n > \varepsilon\right) \leq c \sum_{k=1}^{k_1} \varepsilon^{-q}(\Delta b_1(k))^{-q\alpha}\left((\Delta b_1(k))^{q/2} + \sum_{k=2}^{k_n} \sum_{k=d=1}^{k_n} E|X_{n,k}|^q\right).
\]

We have
\[
\sum_{k=1}^{k_1} (\Delta b_1(k))^{q(1/2 - \alpha)} \leq \left(\max_{1 \leq k \leq k_n} \Delta b_1(k)\right)^{q(1/2 - \alpha) - 1} \sum_{k=1}^{k_1} \Delta b_1(k)
\]
\[
= \left(\max_{1 \leq k \leq k_n} \Delta b_1(k)\right)^{q(1/2 - \alpha) - 1} \to 0, \text{ as } m(n) \to \infty,
\]
due to (8) and the fact that \(q > (1/2 - \alpha) \). Also
\[
\sum_{k=1}^{k_1} (\Delta b_1(k))^{-q\alpha} \sum_{k=2}^{k_n} \sum_{k=d=1}^{k_n} E|X_{n,k}|^q = \sum_{k \leq k_n} (\Delta b_1(k_1))^{-q\alpha} E|X_{n,k}|^q
\]
\[
\leq \sum_{k \leq k_n} \sigma_n^{-2q\alpha} E|X_{n,k}|^q \to 0, \text{ as } m(n) \to \infty,
\]
due to (9), since \((\Delta b_1(k_1))^{-q\alpha} \leq \sigma_n^{-2q\alpha}\) for all \(1 \leq k \leq k_n\). Reporting these estimates to (49) we see that (8) and (9) imply (47).

\textbf{Proof of (48).} We have
\[
\Pi_2(J, n; \varepsilon) \leq \sum_{j \geq J} P(2^{\alpha_j} \max_{r \in D_j} \psi_n(r, r^-) > \varepsilon)
\]
\[
\leq \sum_{j \geq J} \sum_{r \in D_j} \varepsilon^{-q(\alpha_j)^q} E|\psi_n(r, r^-)|^q.
\]
Doob inequality together with (33) gives us

\[E \psi_n(r, r^-)^q \leq E \left| \sum_{k_2, d \leq k_{n, 2d}} \left(\sum_{k_1 = u_1(r^-) + 2}^{u_1(r)} X_{n, k} \right)^q \right| \leq \varepsilon \left(\sum_{k_1 = u_1(r^-) + 2}^{u_1(r)} \sum_{k_2, d \leq k_{n, 2d}} \sigma^2_{n, k} \right)^{q/2} + \sum_{k_1 = u_1(r^-) + 2}^{u_1(r)} \sum_{k_2, d \leq k_{n, 2d}} E |X_{n, k}|^q. \]

Due to definition of \(u_1(r) \)

\[\sum_{k_1 = u_1(r^-) + 2}^{u_1(r)} \sum_{k_2, d \leq k_{n, 2d}} \sigma^2_{n, k} = \sum_{k_1 = u_1(r^-) + 2}^{u_1(r)} \Delta b_1(k_1) \leq r - r^- = 2^{-j}, \]

thus

\[\Pi_1(J, n, \varepsilon) \leq \frac{c}{\varepsilon^q} \sum_{j \geq J} 2^{(q_0 + 1 - q/2)j} + \frac{c}{\varepsilon^q} \sum_{j \geq J} \sum_{r \in D_j} 2^{q_0 j} u_1(r) \sum_{k_1 = u_1(r^-) + 2}^{u_1(r)} \sum_{k_2, d \leq k_{n, 2d}} E |X_{n, k}|^q. \]

(50)

Denote by \(I(J, n, q) \) the second sum without the constant \(c\varepsilon^{-q} \). By changing the order of summation we get

\[I(J, n, q) = \sum_{1 \leq k \leq k_n} E |X_{n, k}|^q \sum_{j \geq J} 2^{q_0 j} \sum_{r \in D_j} 1 \{ u_1(r^-) + 1 < k_1 = u_1(r) \}. \]

(51)

The proof further proceeds as in one dimensional case [7]. Consider for fixed \(k_1 \) the condition

\[u_1(r^-) + 1 < k_1 < u_1(r). \]

(52)

Suppose that there exists \(r \in D_j \) satisfying (52) and take another \(r' \in D_j \). Since \(u_1 \) is non-decreasing, if \(r' < r^- \) we have \(u_1(r') < u_1(r^-) + 1 < k_1 \), and thus \(r' \) cannot satisfy (52). If \(r' > r \), we have that \(r' > r^- \), and we have that \(k \leq u_1(r') < u_1(r^-) + 1 \) and again if follows that \(r' \) cannot satisfy (52). Thus there will exist at most only one \(r \) satisfying (52). If such \(r \) exists we have

\[r^- \leq \sum_{i=1}^{u_1(r^-) + 1} \Delta b_1(i) < \sum_{i=1}^{k_1} \Delta b_1(i) \leq \sum_{i=1}^{u_1(r)} \Delta b_1(i) \leq r. \]

Thus \(\Delta b_1(k_1) \leq 2^{-j} \). So

\[\forall k_1 = 1, \ldots, k_n, \sum_{r \in D_j} 1 \{ u_1(r^-) + 1 < k_1 \leq u_1(r) \} \leq 1 \{ \Delta b_1(k_1) \leq 2^{-j} \} \]

so

\[\sum_{j \geq J} 2^{q_0 j} \sum_{r \in D_j} 1 \{ u_1(r^-) + 1 < k_1 \leq u_1(r) \} \leq \frac{2^{q_0}}{2^{q_0} - 1} (\Delta b_1(k_1))^{-aq} \]

(53)
(we can sum only those \(j \), for which \(\Delta b_1(k_1) \leq 2^{-7} \), because for larger \(j, r \) and \(r' \) will be closer together and will fall in the same \(R_{n,k} \).

Reporting estimate (53) to (51) we get

\[
I(J, n, q) \leq C \sum_{k \leq k_n} (\Delta b_1(k_1))^{-q\alpha} E |X_{n,k}|^q \leq \sum_{k \leq k_n} \sigma_{n,k}^{-2q\alpha} E |X_{n,k}|^q
\]

and substituting this to inequality (50) we get

\[
\Pi_1(J, n; \varepsilon) \leq C_1 \varepsilon^{-q2^{-7q\alpha+1-q/2}} + C_2 \sum_{k \leq k_n} \sigma_{n,k}^{-2q\alpha} E |X_{n,k}|^q.
\]

Thus (48) follows from (9), and condition (ii) holds.

5.2 Proof of theorem 4

It suffices to check that (47) and (48) hold.

Proof of (47) Define:

\[
S_{n,r}(k) = \sum_{1 \leq j \leq k} X_{n,j,r}, \quad S_{n,r}(k)' = \sum_{1 \leq j \leq k} (X_{n,j,r} - E X_{n,j,r}).
\]

Due to (13), (47) reduces to

\[
\lim_{m(n) \to \infty} \sup_{m(n)} P \left(\max_{1 \leq k \leq k_n} \frac{|\Delta^{(1)}_{k_1} S_{n,r}(k)|}{(\Delta b_1(k_1))^{\alpha}} > \varepsilon \right) = 0. \quad (54)
\]

We have

\[
E |X_{n,k,r}| \leq E^{1/2} X_{n,k}^{2} P^{1/2} (|X_{n,k}| > \tau \sigma_{n,k}^{2\alpha})
\]

By applying Cauchy inequality we get

\[
\max_{1 \leq k \leq k_n} \frac{|E \Delta^{(1)}_{k_1} S_{n,r}(k)|}{(\Delta b_1(k_1))^{\alpha}} \leq \max_{1 \leq k \leq k_n} \frac{\sum_{k_{j_1},j_1=1}^{k_{2,d}} E |X_{n,j,r}|}{(\Delta b_1(k_1))^{\alpha}} \leq \max_{1 \leq k \leq k_n} \frac{(\Delta b_1(k_1))^{1/2}}{(\Delta b_1(k_1))^{\alpha}} \left(\sum_{1 \leq k \leq k_n} P(|X_{n,k}| > \tau \sigma_{n,k}^{2\alpha}) \right)^{1/2}.
\]

Hence, due to (8) and (13), (54) reduces to

\[
\lim_{m(n) \to \infty} \sup_{m(n)} P \left(\max_{1 \leq k \leq k_n} \frac{|\Delta^{(1)}_{k_1} S_{n,r}(k)|}{(\Delta b_1(k_1))^{\alpha}} > \varepsilon / 2 \right) = 0. \quad (55)
\]

Since

\[
\text{Var} X_{n,k,r} \leq E X_{n,k,r}^{2} \leq E X_{n,k}^{2} = \sigma_{n,k}^{2},
\]
Using Markov, Doob and Rosenthal inequalities for \(q > 1/(1 - \alpha) \) we get

\[
P\left(\max_{1 \leq k \leq k_n} \left| \frac{S_{n, \tau}^{S_n}(k)}{(\Delta b_1(k_1))^{a_k}} \right| > \varepsilon/2 \right) \leq c \sum_{k=1}^{k_n} (\varepsilon/2)^{-q} (\Delta b_1(k_1))^{-q \alpha} |\Delta b_1(1)|^{\alpha} \left(\sum_{k_{2,d}=1}^{k_{n,2,d}} E |X_{n,k,\tau}|^q \right)^{1/2} \]

\[
\leq c (\varepsilon/2)^{-q} \sum_{k=1}^{k_n} (\Delta b_1(k_1))^{q(1/2 - \alpha)} \sum_{1 \leq k \leq k_n} \sigma_{n,k}^{2q \alpha} E |X_{n,k,\tau}|^q. \]

Now, since this inequality holds for each \(\tau > 0 \), (55) follows from (8) and (15).

Proof of (48) Introduce similar definitions \(\psi_{n,\tau}(r, r^-) \) and \(\psi_{n,\tau}(r, r^-) \). Using (13), (48) reduces to

\[
\limsup_{m(n) \to \infty} P\left(\sup_{j \geq J} \sup_{r \in D_j} \max_{1 \leq k \leq k_n} \psi_{n,\tau}(r, r^-) > \varepsilon \right) = 0. \tag{56} \]

We have

\[
\sup_{j \geq J} \sup_{r \in D_j} \max_{1 \leq k \leq k_n} \left| \Delta_i^{(1)} E S_{n,\tau}((i, k_{2,d})) \right| \leq \sup_{j \geq J} \left(\sum_{i=1}^{u_1(r)} \Delta b_1(i) \right)^{1/2} \left(\sum_{i=1}^{u_1(r)} \sum_{k_{2,d}=1}^{k_{n,2,d}} P(|X_{n,k}| > \sigma_{n,k}^2) \right)^{1/2} \]

\[
\leq 2^{J(\alpha - 1/2)} \left(\sum_{1 \leq k \leq k_n} P(|X_{n,k}| > \sigma_{n,k}^2) \right)^{1/2}, \]

thus (56) reduces to

\[
\limsup_{m(n) \to \infty} P\left(\sup_{j \geq J} \sup_{r \in D_j} \max_{1 \leq k \leq k_n} \psi_{n,\tau}(r, r^-) > \varepsilon/2 \right) = 0. \tag{57} \]

Using similar arguments we get

\[
P\left(\sup_{j \geq J} \sup_{r \in D_j} \max_{1 \leq k \leq k_n} \psi_{n,\tau}(r, r^-) > \varepsilon/2 \right) \]

\[
\leq \frac{c}{\varepsilon^q} \sum_{j \geq J} 2^{(q \alpha + 1/2)j} + \frac{c}{\varepsilon^q} \sum_{j \geq J} \sum_{r \in D_j} 2^{q \alpha j} \sum_{k_{1}=u_1(r^-)+1}^{u_1(r)} \sum_{k_{2,d}=1}^{k_{n,2,d}} E |X_{n,k,\tau}|^q. \]

Now using estimate (53) we get

\[
P\left(\sup_{j \geq J} \sup_{r \in D_j} \max_{1 \leq k \leq k_n} \psi_{n,\tau}(r, r^-) > \varepsilon/2 \right) \leq C_1 2^{(q \alpha + 1/2)J} + C_2 \sum_{1 \leq k \leq k_n} \sigma_{n,k}^{2q \alpha} E |X_{n,k,\tau}|^q. \]

Since this inequality holds for each \(\tau > 0 \), (57) follows due to (15).
6 Proof of corollaries

6.1 Proof of the corollary 1

We have

$$\sum_{1 \leq k \leq k_n} \mathbb{E} X_{n,k}^2 1\{|X_{n,k}| \geq \varepsilon\} \leq \frac{1}{\varepsilon^{q-2}} \sum_{1 \leq k \leq k_n} \mathbb{E} |X_{n,k}|^q.$$

Since $\sigma_{n,k}^2 \leq 1$ condition (9) ensures that $\sum_{1 \leq k \leq k_n} \mathbb{E} |X_{n,k}|^q$ converges to zero. So Lindeberg condition (11) is ensured by (9), and we get the convergence of finite dimensional distributions. Since the set \mathbb{N}^d with the binary relation $j \leq n$ is directed, the summation process \{\(\Xi_n(t), t \in [0,1]^d\)\} is a net. So (12) follows due to Prohorov’s theorem for nets, see e.g. [13, th.1.3.9, p.21].

6.2 Proof of corollary 2

It is sufficient to check that

$$\mu_n(t) \to \pi(t) \quad (58)$$

We have

$$b_i(k_i) = \sum_{k=1}^{k_i} a_{n,k},$$

thus

$$1\{B(k) \in [0,t]\} = \prod_{i=1}^d 1\{b_i(k_i) \in [0,t_i]\},$$

so

$$\mu_n(t) = \sum_{k \leq k_n} 1\{B(t) \in [0,t]\} \sigma_{n,k}^2 = \prod_{i=1}^d \sum_{k_i=1}^{k_i^*} 1\{b_i(k_i) \in [0,t_i]\} a_{n,k_i}^i.$$

But

$$\sum_{k_i=1}^{k_i^*} 1\{b_i(k_i) \in [0,t_i]\} a_{n,k_i}^i = \sum_{k_i=1}^{u_i(t_i)} a_{n,k_i}^i \to t_i,$$

thus (58) holds, which together with (9) gives us (12).

References

